Space-Time Adventures on Novena

Introducing: Balboa

Star Simpson Andy Isaacson @starsandrobots @eqe

#balboaFPGA

What This Talk is About

- What is Novena?
- What are FPGAs and why do you use one?
- What tools exist today?
- Balboa manifesto & our work done to date

Background

 $\bullet \bullet \bullet \bullet$

Novena

Novena

What is an FPGA?

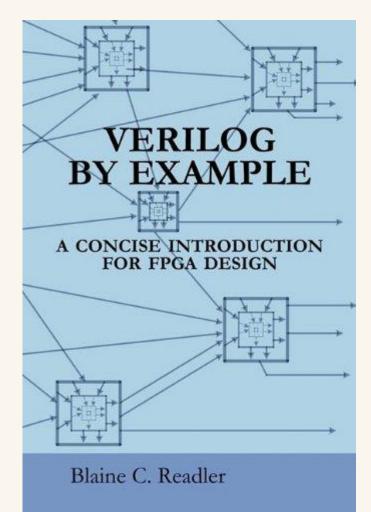
"Field Programmable Gate Array"

What are FPGAs good for?

FPGA Terms

- LUTs
- Logic cells
- Slices
- Fabric
- Cores

Hardware Description Languages (HDLs)


What is a hardware description language?

Verilog

```
module subBytes(clk, rst, en, in, out, ready);
    input clk, en, rst;
    output ready;
    input wire [127:0] in;
    output reg [127:0] out;
    assign out[7:0 ] = aesSBox(in[7:0 ]);
    assign out[15:8 ] = aesSBox(in[15:8 ]);
    assign out[23:16] = aesSBox(in[23:16]);
    assign out[31:24] = aesSBox(in[31:24]);
    always @(posedge clk or posedge rst) begin
       if (rst) begin
            ready <= 0;
        end
        else if (en) begin
            ready \leq 1;
        end
    end
endmodule
```

Verilog Reference

Verilog by Example a good place to start learning Verilog:

VHDL

```
1 library ieee;
 2 use ieee.std logic 1164.all;
 3 use ieee.numeric_std.all;
 4
 5 entity signed_adder is
 6
     port
 7
 8
       aclr : in std_logic;
      clk : in std_logic;
 9
10
       a : in std_logic_vector;
11
      b : in std_logic_vector;
12
           : out std_logic_vector
       q
13 );
14 end signed_adder;
15
16 architecture signed_adder_arch of signed_adder is
17
    signal q_s : signed(a'high+1 downto 0); -- extra bit wide
18
19 begin -- architecture
20 assert(a'length >= b'length)
       report "Port A must be the longer vector if different sizes!"
21
       severity FAILURE;
22
   q <= std_logic_vector(q_s);</pre>
23
24
25
     adding_proc:
    process (aclr, clk)
26
27
       beain
        if (aclr = '1') then
28
29
           q_s <= (others => '0');
30
         elsif rising_edge(clk) then
           q_s <= ('0'&signed(a)) + ('0'&signed(b));</pre>
31
32
         end if; -- clk'd
33
       end process;
34
35 end signed_adder_arch;
```

How to Build for an FPGA

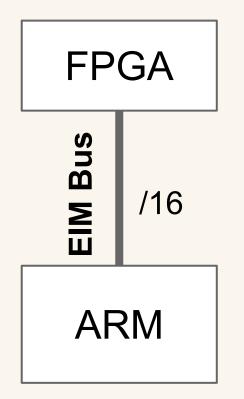
- synthesis
- place and route
- bitstream generation

What is an FPGA Core?

- IP Cores

Environment

 $\bullet \bullet \bullet \bullet$


Novena

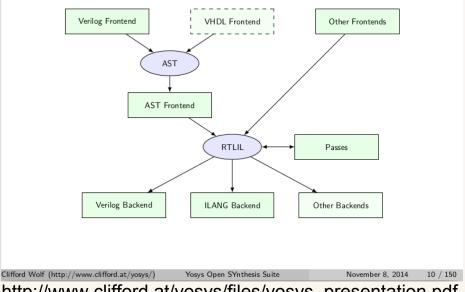
Spartan 6 LX45

- 43k logic cells
- 6.8k slices
- 401kb distributed RAM
- 58 DSP48A slices
- 2088kb block RAM

Novena Hardware Platform

Uses of the FPGA on Novena

- bitcoin mining
- emulation
- crypto
- coprocessing
- high speed data acquisition
 - paired with 2x 8-bit 500++Msps ADC


Current OSS Ecosystem for FPGAs

- Yosys
- Migen
- MyHDL
- Chisel

Yosys

"Yosys is the first full-featured open source software for Verilog HDL synthesis."

Program Components and Data Formats

http://www.clifford.at/yosys/files/yosys_presentation.pdf

"Python toolbox for building hardware"

- High level Python description of circuit
- Run Python program to generate your HDL
- Used in real live projects misoc, etc
- Outputs Verilog -or- VHDL

Migen

from migen.fhdl.std import *
from mibuild.platforms import m1
plat = m1.Platform()
led = plat.request("user_led")
m = Module()
counter = Signal(26)
m.comb += led.eq(counter[25])
m.sync += counter.eq(counter + 1)
plat.build_cmdline(m)

"Design hardware with Python!"

- Closer to hardware than Migen?
- Lots of tools, docs, integration for real usage
- Basically a Python syntax for Verilog?
- Outputs Verilog -or- VHDL

MyHDL

from myhdl import *

```
ACTIVE = 0
DirType = enum('RIGHT', 'LEFT')
```

def jc2(goLeft, goRight, stop, clk, q):

""" A bi-directional 4-bit Johnson counter with stop control.

I/O pins:

clk : input free-running slow clock goLeft : input signal to shift left (active-low switch) goRight : input signal to shift right (active-low switch) stop : input signal to stop counting (active-low switch) q : 4-bit counter output (active-low LEDs; q[0] is right-most)

....

```
dir = Signal(DirType.LEFT)
run = Signal(False)
@always(clk.posedge)
```

```
def logic():
    # direction
    if goRight == ACTIVE:
        dir.next = DirType.RIGHT
        run.next = True
    elif goLeft == ACTIVE:
        dir.next = DirType.LEFT
        run.next = True
```

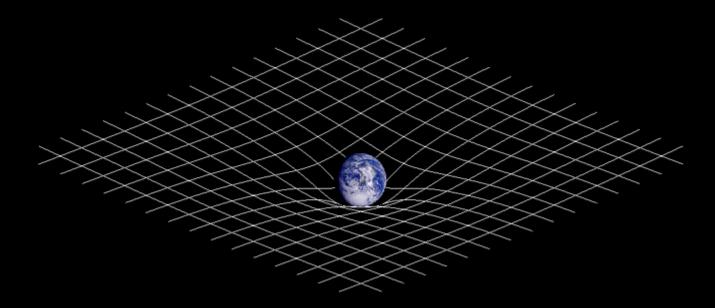

"Hardware construction embedded in Scala"

- Often one-to-one with Verilog
- Uses abstraction to generalize

OO - functional programming - parameterized types

Chisel

import Chisel._


```
class GCD extends Module {
   val io = new Bundle {
      val a = UInt(INPUT, 16)
      val b = UInt(INPUT, 16)
      val e = Bool(INPUT)
      val z = UInt(0UTPUT, 16)
      val v = Bool(0UTPUT)
   }
   val x = Reg(UInt())
   val y = Reg(UInt())
   when (x > y) { x := x - y }
   unless (x > y) { y := y - x }
   when (io.e) { x := io.a; y := io.b }
   io.z := x
   io.v := y === UInt(0)
}
```

```
object Example {
  def main(args: Array[String]): Unit = {
    chiselMain(args, () => Module(new GCD()))
}
```

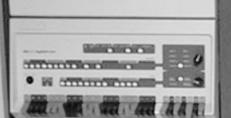
Why We Need a Free Toolchain

- Flexible targeting
- New HDL experiments
- Faster builds
- Longevity

History of Sharing Space & Time

http://upload.wikimedia.org/wikipedia/commons/2/22/Spacetime_curvature.png

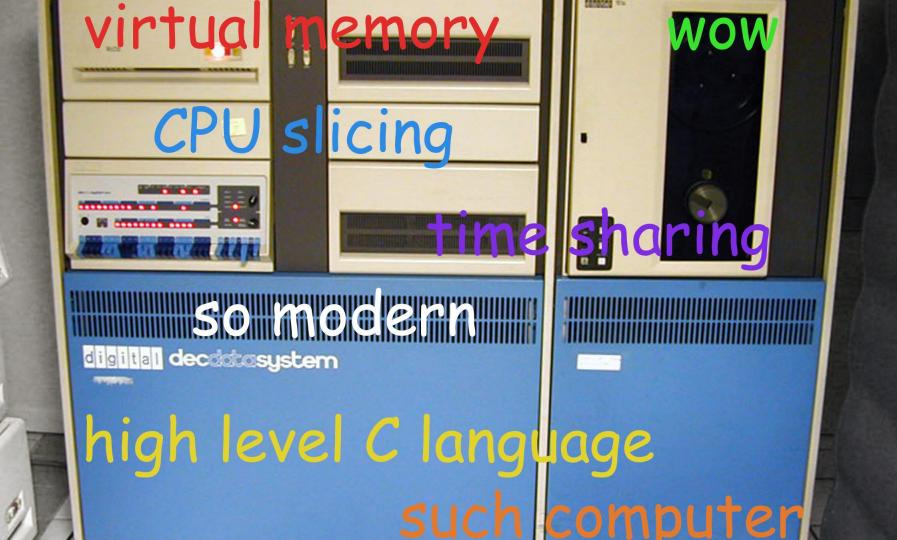
In the Beginning


Custom CPUs, Applications, Peripherals

All wired together to build a COMPUTER (ok, at the time this was really cool)

UNIX, 1972: New Ideas

810


1010210 111

digital decisiosystem

Minter

http://commons.wikimedia.org/wiki/File:PDP-11-70-DDS570.jp

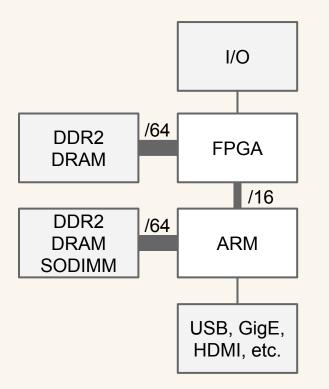
Infrastructure We've Gained

- Virtual Memory
- Timesharing
- OS APIs
- Networking
- Device Drivers
- Compilers
- Libraries

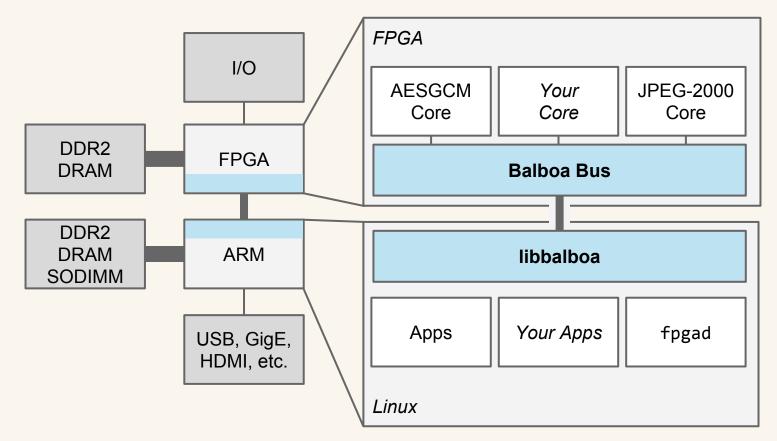
Manifesto

 $\bullet \bullet \bullet \bullet$

Balboa Vision


To let us do more than one thing at a time on the FPGA, and to do so flexibly.

Balboa Definition


Balboa is:

- a library and some control software
 - makes sure management happens correctly
- a bus you can plug into on the FPGA, when you're writing the core.

Novena Hardware Platform

Balboa Architecture

Virtual Hardware and Space-sharing

FPGAs are huge, and cheap; Novena is perfect for experimenting!

Balboa Vision: Where We're Going

(Why having Balboa will be cool)

- Interoperability of accelerator cores
- Current tooling is not great
- FPGAs currently not widely used because of tool roadblocks
- FPGAs can be more useful

Balboa Goals

- You write cores in your chosen HDL
- Fast, direct access to cores from app code
- Standard interfaces for cores and apps
- User chooses what runs, when

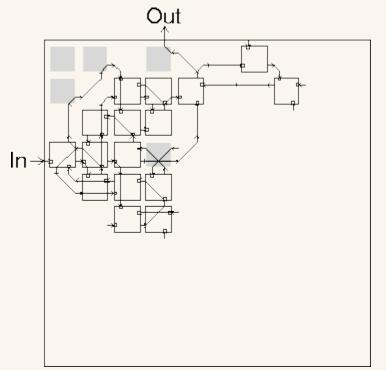
What we currently have:

- Multiple cores running on FPGA, one at a time
- Apps can mmap() their core
- No kernel driver (yet)

What's Next

 $\bullet \bullet \bullet \bullet$

Seven Security Issues


A few challenges we'll need to overcome

Seven Awesome Hacks ••••••

Electromagnetic coupling

"*An Evolved Circuit*" Adrian Thompson, ICES96

http://bit.ly/evolved_circuit

(https://web.archive.org/web/20120302224543/ http://www.sussex.ac.uk/ Users/adrianth/ices96/paper.html)

Seven Awesome Hacks ••••••

Electromagnetic coupling Untrusted IO to bitstream

Seven Awesome Hacks ······

Electromagnetic coupling Untrusted IO to bitstream Bitstream exploits

Seven Awesome Hacks ·····

Electromagnetic coupling Untrusted IO to bitstream Bitstream exploits Bus protocol

Seven Awesome Hacks ·····

Electromagnetic coupling Untrusted IO to bitstream Bitstream exploits Bus protocol Malicious app

Seven Awesome Hacks ······

Electromagnetic coupling Untrusted IO to bitstream **Bitstream exploits Bus protocol** Malicious app **Timing attacks**

Seven Awesome Hacks ······

Electromagnetic coupling Untrusted IO to bitstream **Bitstream exploits Bus protocol** Malicious app **Timing attacks** Hardware backdoors

Seven Next Projects

Here's where we could use your help

Seven Next Projects ••••••

Combine cores into one image

Seven Next Projects ••••••

Combine cores into one image Dynamically reconfigure FPGA slicewise

Seven Next Projects

Combine cores into one image Dynamically reconfigure FPGA slicewise Inter-core bus arbitration

Seven Next Projects

Combine cores into one image Dynamically reconfigure FPGA slicewise Inter-core bus arbitration Multiple mmap()ed cores

Seven Next Projects ·····

Combine cores into one image Dynamically reconfigure FPGA slicewise Inter-core bus arbitration Multiple mmap()ed cores I/O

Seven Next Projects ······

Combine cores into one image Dynamically reconfigure FPGA slicewise Inter-core bus arbitration Multiple mmap()ed cores I/O**FPGA/DRAM** allocation

Seven Next Projects

Combine cores into one image Dynamically reconfigure FPGA slicewise Inter-core bus arbitration Multiple mmap()ed cores I/O**FPGA/DRAM** allocation Higher level implementation support

Seven Next Projects

Join us to find out more!

wiki: https://balboa.is

github: https://github.com/balboa-fpga/

twitter: #balboaFPGA

mailing list (coming soon)

Star Simpson @starsandrobots Andy Isaacson

