Designing Effective Step-By-Step Assembly Instructions

Maneesh Agrawala* Doantam Phan Julie Heiser John Haymaker Jeff Klingner
Microsoft Research Stanford University Stanford University Stanford University Stanford University
Pat Hanrahan Barbara Tversky
Stanford University Stanford University

Abstract
We present design principles for creating effective assembly in- S
structions and a system that is based on these principles. The prin- I -
ciples are drawn from cognitive psychology research which investi- TR,
gated a person’s conceptual models of assembly and effective meth- f
ods to visually communicate assembly information. Our system is
inspired by earlier work in robotics on assembly planning and in vi- 1 2

sualization on automated presentation design. Although other sys-
tems have considered presentation and planning independently, we
believe it is necessary to address the two problems simultaneously
in order to create effective assembly instructions. We describe the
algorithmic techniques used to produce assembly instructions given
object geometry, orientation, and optional grouping and ordering
constraints on the object’s parts. Our results demonstrate that it
is possible to produce aesthetically pleasing and easy to follow in-
structions for many everyday objects.

Keywords: Visualization, Assembly Instructions

1 Introduction

Many everyday products, such as furniture, appliances, and toys,
require assembly at home. Included with each product is a set of
instructions showing how to put it together [Mijksenaar and West-
endorp 1999]. For modular product lines, such as customizable of-
fice furniture, many different versions of the instructions are neces-
sary. As the number of customizable products and demand for task-
specific instructions increase, technology will be needed to produce
instructions more cost effectively. Already there is a high incidence
of poorly designed and out of date instructions.

The problem is that it is difficult and expensive to design assem-
bly instructions that are easy to understand and follow. Since the
instruction design process has not been systematized, skilled hu-
man designers are needed to produce good instructions. As a result
the process of producing instructions is time-consuming and labor-
intensive. Computer support is currently limited to replacing low-
level tools such as pen and paper. Most high-level design decisions
are still made by human designers.

We have developed a system that provides higher-level tools for
designing assembly instructions. Figure 1 depicts instructions pro-
duced with our system. A broader goal of our work is to understand
how humans produce and use visual instructions and to codify de-

*maneesh@graphics.stanford.edu

Figure 1: Assembly instructions for a TV stand. Our system plans the set of assembly
operations to show in each diagram and then renders action diagrams which explicitly
depict the operations required to attach each part.

sign knowledge in computer programs so that it is easier to produce
clear drawings of 3D assemblies [Tversky et al. Submitted].
The two primary tasks in designing assembly instructions are:

e Planning: Most objects can be assembled in a variety of
ways. The challenge is to choose a sequence of assembly op-
erations that will be easy for users to understand and follow.

e Presentation: There are many ways to depict assembly op-
erations. The challenge is to convey the assembly operations
clearly in a series of diagrams.

These tasks have been independently studied in the areas of
robotics and visualization. Assembly planning is a classic problem
in robotics [Wolter 1989; de Mello and Sanderson 1991; Wilson
1992; Romney et al. 1995]. Given the geometry of each part in the
assembly, an assembly planner computes all geometrically feasible
sequences of assembly operations. These plans are used by robotic
machine tools for automated manufacturing and are not meant to be
seen, understood, or carried out by humans. Most robotic assembly
plans would seem unnatural to people assembling everyday objects.

In contrast, automated presentation design systems have been de-
veloped in the domain of visualization [Feiner 1985; Mackinlay
1986], with the goal of producing diagrams that are easy for hu-
mans to understand. These systems assume that the information to
be portrayed is given as input and automatically design an effective
diagram to convey that information. Although some of these au-
tomated presentation systems have been developed to illustrate 3D



objects and actions [Seligmann and Feiner 1991; Rist et al. 1994;
Butz 1997; Strothotte 1998], their primary focus has been on show-
ing the locations or physical properties of parts.

Our approach is inspired by a combination of ideas from these
previous systems. However, we believe that decisions involved in
planning and presentation are strongly intertwined. Therefore both
issues must be considered simultaneously.

The contributions of our work include:

Cognitive design principles for effective assembly instructions:
We performed cognitive psychology experiments to identify how
people conceive of the assembly process and to characterize the
properties of well-designed instructions. Based on the results of
these experiments and prior cognitive psychology research we iden-
tify design principles for effective assembly instructions. These
principles connect people’s conceptual model of the assembly task
to the visual representation of that task.

A system instantiating these design principles: Our assembly
instruction design system consists of two parts: a planner and a
presenter. The planner searches the space of feasible assembly se-
quences to find one that best matches the cognitive design princi-
ples. To do this the planner must also consider many aspects of
presentation. The presenter then renders a diagram for each step of
the assembly sequence generated by the planner. The presenter also
uses the design principles to determine where to place parts, guide-
lines and arrows. In particular, the presenter can generate action
diagrams which use the conventions of exploded views to clearly
depict the parts and operation required in each assembly step.

2 Design Principles for Assembly Instructions

Before we can develop automated tools for designing assembly in-
structions, we must understand how people think about and com-
municate the process of assembling an object. Cognitive psycholo-
gists have developed a variety of techniques to investigate how peo-
ple mentally represent ideas and concepts. We recently performed
human subject experiments based on these techniques to determine
the mental representations underlying assembly [Heiser and Tver-
sky 2002]. We briefly describe our experimental setup.

In the first experiment we asked participants to assemble a TV
stand, given only a photograph of the completed stand as a guide.
After they assembled the TV stand, we asked them to create a set
of instructions that would show another person how to assemble it.
Examples of the diagrams they drew are shown in figure 2. In the
second experiment we asked a new group of participants to rank
the effectiveness of a subset of the instructions produced in the first
experiment. Finally, the third experiment tested whether the highly
ranked instructions were more effective. Yet another group of par-
ticipants used instructions ranked in the second experiment to as-
semble the TV stand while experimenters recorded task completion
time and error rates. We found that in general the highly rated in-
structions were easier to understand and follow. Participants spent
less time assembling the TV stand and made fewer errors.

Based on these experiments, as well as earlier cognitive research,
we identify a set of design principles for creating assembly instruc-
tions that are easy to understand and follow.

Hierarchy and grouping of parts: People think of assemblies as
a hierarchy of parts. At the base level parts are segmented by per-
ceptual salience indexed by contour discontinuity; that is, parts that
are disjoint are more likely to be noticed. Typically, the disjoint
parts are also distinguished by different functions (e.g. the legs of
a chair or the drawers of a desk) [Tversky and Hemenway 1984].
When possible, people prefer that parts within a group are added to
the assembly at the same time or in sequence one after another. The
part groups are usually considered as hierarchical structures, which
parallel the subassembly structure of the object.

i

Structural Diagram

Action Diagram

Figure 2: Hand-drawn assembly diagrams for the TV stand. The action diagram is
preferable to the structural diagram because it depicts the operations required to attach
each part. In this case the action diagram shows how the shelf is fastened by the screws.

Hierarchy of operations: People think of the attachment opera-
tions required to build an assembly as a hierarchy of actions on the
parts [Zacks et al. 2001]. At the higher levels people consider the
operations required to combine separate subassemblies. Our experi-
ments showed that as people work down the subassembly hierarchy,
they eventually consider the operations required to join significant
individual parts. At the lowest level of the hierarchy people con-
sider attaching smaller parts and fasteners to the more significant
parts. The significance of a part depends on a number of factors
including function, size, symmetry, etc.

While the hierarchy of operations may contain many levels for
complicated objects with numerous subassemblies (e.g. a car en-
gine), a two-level hierarchy (significant parts and less important
parts + fasteners) is common for many build-at-home objects, in-
cluding most furniture. In this paper we focus on design tools for
these two levels.

Step-by-step instructions: Our experiments confirmed the re-
sults of Novick et al. [2000] showing that people prefer instructions
that present the assembly operations across a sequence of diagrams
rather than a single diagram showing all the operations. Moreover,
if the assembly contains significant parts as well as less important
parts, people generally prefer that each diagram show how to attach
only one significant part at a time. However, each diagram will usu-
ally show multiple non-significant part attachments. In figure 1 the
non-significant parts include the fasteners and the wheels.

While it is essential that the assembly diagrams are clear and
easy to read, each diagram should also present as much information
as possible. If instructions are split across too many diagrams they
become tedious to use. Similarly, some assemblies require the same
sequence of operations to be repeated many times. For example,
when assembling a bookcase, each shelf is attached in exactly the
same way. Depicting such repetitive operations in detail can make
the instructions unnecessarily long and tiresome. A better approach
is to skip repetitive operations after they have been presented in
detail a few times.

Structural diagrams and action diagrams: Based on analysis
of the hand-drawn instructions we collected in the first experiment,
we define two types of assembly diagrams: structural diagrams and
action diagrams (see figure 2). Structural diagrams present all the
parts of the assembly in their final assembled positions; users must
compare two consecutive diagrams to infer which parts are to be at-
tached. Action diagrams spatially separate the parts to be attached
from the parts that are already attached and use guidelines to indi-
cate where the new parts attach to the earlier parts.

We found that action diagrams are superior to structural dia-
grams for the TV stand assembly task. We believe that this is be-
cause action diagrams contain all the information in the structural
diagrams and also explicitly depict the attachment operations re-
quired in each step. However, toys such as LEGO often use struc-
tural diagrams rather than action diagrams. Showing the attachment
operations may be less important because most LEGO parts fasten
in the same way.

Orientation: Most objects have a set of natural orientations or
preferred views [Palmer et al. 1981; Blanz et al. 1999]. These orien-



tations maximize the number of important features that are visible.
They minimize accidental alignments and facilitate object recogni-
tion. In assembly instructions, these natural orientations may con-
form to other objectives such as gravitational stability. Large, bulky
parts like the frame of a bookcase may be oriented to lie horizon-
tally on the ground plane in the initial frame-building stages and
later be reoriented to stand upright when the shelves are attached.

Visibility: Perhaps the strongest design principle is that all the
new parts added in each step of the assembly must be visible. Users
must be able to see the parts in order to attach them. However, one
exception to this rule is that maintaining visibility for all parts in
a symmetric group is less important. If the user is aware of the
symmetry it is usually enough that at least one part in the group is
visible, since the others will attach in a similar way.

While the new parts have to be visible, the parts attached in ear-
lier steps should also be visible to provide context for the new at-
tachments. If only the new parts are visible, it may be unclear how
the new parts are supposed to attach to the earlier parts. Note that in
this case it is not necessary for each of the earlier parts to be visible.
Rather a portion of the entire set of earlier parts should be visible.

3 System Overview

Our assembly instruction design system is divided into two compo-
nents; a planner and a presenter. The input consists of:

e Geometry: The geometry of each part of the object in its final
assembled position.

e Orientations: Default camera viewpoint and assembly orien-
tation. A preferred orientation for each significant part may
also be specified.

e Groupings: Labeling of parts that should be grouped together
based on functional, semantic, or geometric properties. The
grouping labels used by the system include fasteners, signifi-
cant parts, symmetry, and similar-action.

e Ordering Constraints: Constraints on the order of assembly
operations in the form attach part p; before part p;.

The minimum input information consists of the part geometry
and a default camera viewpoint and object orientation. All other
information is optional, and the system can produce useful instruc-
tions without it. The additional grouping information and ordering
constraints help the system to make even better design choices. The
input may be generated automatically by other software or provided
by the users. Regardless of how the input is originally generated,
users can work with the system, adding information such as order-
ing constraints or part groupings to produce the final set of instruc-
tions.

From this input the planner computes the set of operations to
show in each assembly diagram. The presenter renders each assem-
bly step as a diagram, and outputs the sequence of diagrams as the
final set of assembly instructions. The planner and presenter are de-
scribed in sections 4 and 5. Before we present these components in
detail, we summarize several of the basic, low-level computations
used throughout our system.

3.1 Low-level Computations

Our system frequently needs to know if parts are in contact, whether
parts block each other, and the visibility relationship between parts.
We briefly describe how to compute this information.

Contacts: Given any set of parts P, we provide a function
Contacts(P) that returns the set of parts in contact with at least one
part in P. To determine which parts are in contact we compute the
shortest distance between each pair of parts [Lin and Canny 1991,
Quinlan 1994]. If this shortest distance is 0.0 we mark the pair as
being in contact. We also store the faces of each part that are within
the contact distance of one another.

Py blocked Pp3 blocked -
by py by py Py <P3 p{ ;3
N 7/ p
P2 2
Py p3
Py / py blocked py blocked . Py —P3
I by p, by p3 ¢ J 3 \ 0 /
P2 2
Part Geometry LTB Cones Blocking Graph

Figure 3: (left) A three part assembly. (middle) The LTB cone for p; and p, encodes
that p, is blocked from moving in the upper hemisphere by p; and vice versa. Sim-
ilarly the LTB cone for p; and p3 encodes the ps is blocked from moving in the left
hemisphere by p;. (right) The blocking graph is a partition of the sphere of trans-
lational motion directions, with a directed graph storing the blocking relationships for
each partitioned region. A graph edge of the form p; — p; means that part p; is blocked
by p;j for all directions in the corresponding region of the sphere. The blocking graph
combines all the information from the LTB cones into one structure. Figure adapted
from Romney et al. [1995]

Blocking: For any two parts p; and p; we provide a function
RemoveDirs(pj, pj), that returns the set of directions in which p;
can be removed from p; without interference, via a single transla-
tional motion. In all other directions p; is blocked by p;.

To compute these blocking relationships between all the parts
in the assembly we follow the approach of Romney et al. [1995].
We first compute a local translational blocking (LTB) cone for each
pair of parts p; and pj that are in contact. The LTB cone is the
set of directions in which p; blocks p; from translational motion
and can be computed directly from the geometry of the parts. The
cone encodes local blocking relationships because it is only com-
puted for parts in contact. As shown in figure 3 we combine all
the LTB cones into a blocking graph structure that encodes all the
blocking relationships in the assembly. Although we consider only
single step local translational motions in our blocking analysis, ex-
tension to global translations [Wilson 1992], multi-step translations
and rotational motions [Guibas et al. 1995] is possible.

While Romney et al. store the blocking graph as an analytical
partitioning of the translational motion sphere, for simplicity we
discretize the sphere and store blocking relationships for each di-
rection independently. For many assemblies only the 6 principal
motion directions are of interest and we only need to compute and
store blocking relationships for these directions. Following Wil-
son’s [1992] terminology, we refer to the directed graph associated
with each discrete direction as a directional blocking graph.

Using the blocking graph structure we can look up
RemoveDirs(pj, pj) for any pair of parts in the assembly.
Similarly we can compute the set of removable directions between
two sets of parts P and Q as:

RemoveDirs(P,Q) = ()
vpiePg;eQ

RemoveDirs(pi,q;) (1)

Visibility:  Given two sets of parts P and Q our visibility test
Vis(P,Q) computes the percentage of P that is visible with respect
to Q. We use a two-pass rendering approach in which we first ren-
der the parts in P using a single color (green in our case). We count
the green pixels to determine Area(P) the projected area of P. Next,
without clearing the framebuffer we render the parts in Q using a
different color (red) and again count the number of green pixels that
remain visible to determine Area(P,Q), the visible projected area of
P with respect to Q. Then the visibility percentage of P with respect
to Q is given by:

Area(P,Q)

Vis(P.Q) = Area(P)

@

4  Planner

As shown in figure 4, our assembly planner computes a set of
assembly operations to show in each diagram. The planner can



All parts

]
Planner )

—> U; = Unattached parts
top screws
Search R = subset of U; pegs
Evaluate ﬁ top Shelfj
Interference - g =
Attachment S b: support board f: right
side side
Ordering o~ e -
G " §  c:bottom shelf  §
rouping
T —
R d: wheels
Visibility
bottom screws
Score for R
Uis1 = U;- Q; | Qi=bestR

Unattached parts | Bestsubsets |Assembly steps

|Sequence Determination |

Ug ={all parts } Qo={b} Po={b}
Pj, Pje1, -
- Py ={e, pegs}
| Reinsert Fasteners | Up={a,c.def} |Qr={ef}
* Py ={f, pegs}
| Reorientation | |[v2=tac.ay Q,={a} P3={a, screws }
Uz={c,d ={c P4 ={c, screws
(P} Vi M), (Piys Vi, Mjsa) .. 3={cd} Qz={c} 4={ }
sequence of assembly steps for Q; Up={d} Qs={d} Ps={d}

¥
Sequence of all assembly steps

Figure 4: Block diagram of the planner and the plan it generates for the TV stand. The
input required to generate this plan consists of 1) geometry of each part in assembled
configuration, 2) default camera and object orientations, 3) parts grouped by symmetry
{e, f},{4 wheels}, {4 pegs}, {4 top screws}, {4 bottom screws}, 4) signifi cant parts
{a,b,c,e, f}, and 5) fasteners {4 pegs, 8 screws}.

choose to attach a part to the assembly or to reorient the assembly.
Attachment is the primary operation, and the planner searches over
the space of all parts to find the best set of part attachments to depict
in each diagram. In some situations the planner may also reorient
the assembly. Such reorientations are either performed to improve
the visibility of subsequent parts or based on orientation constraints
that specify a natural orientation for the object.

Our notation is as follows. When designing assembly step i, the
input to the search is Uj, the set of unattached parts. These are the
parts that have not yet been added to the assembly. The search then
considers each subset R C U; to find the best subset Qj = Rpeg t0
add to the assembly. Once a part is added to the assembly it is
placed in the set of attached parts A;. After choosing the best subset
Qi, we set U1 = Ui —Qj and Aj1 = Aj + Q. We iterate the search
until U is empty and A contains all the parts.

As we saw in section 2, people usually consider the process of
assembly as a hierarchy of attachment operations (attaching sub-
assemblies, attaching significant parts and attaching fasteners to the
significant parts). Our planning search acts at the significant parts
level and therefore only considers non-fastener parts as it is choos-
ing which set of parts to attach next. Initially, Uy is the set of all
non-fasteners in the assembly.

After the search, if Q; contains multiple significant parts
the sequence determination stage subdivides Q; into subsets
Pj,Pj+1,... € Qj, such that each one contains at most one signif-
icant part. This stage also decides whether to omit repetitive as-
sembly operations after they have been presented in detail a few
times. After the sequence determination stage we reinsert the fas-
teners connecting each Pj to the earlier parts back into P;.

The planner outputs a sequence of assembly steps, one step per
diagram. Each assembly step specifies a set of parts P to attach, a
camera viewpoint V and an object orientation M. Note that since
the part sets can contain multiple parts each diagram may show
multiple attachment operations. Part sets may also be empty. In
such cases the step will contain a camera reorientation, an object
reorientation, or both.

4.1 Search

As shown in figure 4 we evaluate several constraints for each subset
R C U;. Most of these constraints are hard constraints that check the
feasibility of attaching the parts in R to the earlier parts A;. If the
current subset R violates any of the hard constraints it is immedi-
ately rejected by the system. The visibility constraint is the only soft
constraint, or objective function, in the system. The search there-
fore looks for a subset of U; that passes the feasibility constraints
and maximizes the visibility score.

Interference: We can add the parts in R to the assembly only if
all of them are removable from the assembly and do not completely
block any other unattached part. We can determine if the parts in R
interfere with one another or the other unattached parts U; by check-
ing that each unattached part uj € U; and its associated fasteners are
removable from A; R, the union of the previously attached parts
and the current subset. Note that U; includes R when this test is
performed. To test if uj is removable from A; R, we simply check
that RemoveDirs(uj, Aj JR) is not empty. We perform that same re-
movability test on each fastener in Fasteners(uj, Aj UR) connecting
uj to the parts in AjJR.

Attachment: Parts should only be added to the assembly when
they can be fastened to it. For example, in figure 1 suppose that
the support board was added to the assembly in the first step. The
next step should not attach the top shelf. Even though the top shelf
is supported by the support board, the top shelf does not directly
fasten onto the support board. In general if a part attaches onto
the assembly by fasteners it should be added to the assembly only
after one or more of the parts it fastens onto is already attached.
More precisely, for each rj € R we check that Fasteners(rj,A;), the
set of fasteners connecting r; to any other non-fastener part already
attached in the assembly, is not empty. This constraint is not applied
to the first diagram since A is empty at that point.

If the fasteners have not been labeled, or if a part rj is not
attached to the assembly by separate fasteners (for example the
wheels of the TV stand), we simply check that the part is in con-
tact with some part already in the assembly. This is a weaker form
of the main attachment constraint. In our previous example, the top
shelf of the TV stand would pass this weaker form of the constraint.

Ordering: To check that ordering constraints of the form attach
pk before p; are satisfied we make sure that if p; is in the current
subset R then py is in the set of previously attached parts, A;.

Grouping: Parts that are labeled as belonging to the same group
should be added to the assembly at the same time. Our system
checks this constraint for parts labeled as symmetric to one another.
For each part rj € R we first look up Symm(rj) the set of parts
labeled by the user as being symmetric to rj. We then check that R
includes all parts in Symm(rj)
Visibility:  For people to easily understand and follow an assem-
bly diagram, it is important for all the parts being attached, R, to be
visible. In addition, some portion of the parts attached previously,
Aj, should be visible to provide context for the new attachments. Fi-
nally, the parts being attached in the current step should not signifi-
cantly occlude parts that will be added in future steps, U;. Therefore
our visibility constraint evaluates three kinds of visibility: current
parts visibility, previous parts visibility and future parts visibility.
The current parts visibility score computes a lower bound on the
visibility of the parts in the current subset R with respect to the other
parts in R as:

Score(R) :Wég(Vis(rj,R—rj)) (3)

]

The previous parts visibility test computes the visibility of the pre-
viously attached parts A; with respect to the current subset R:

Score(Ai) = Vis(Ai,R) 4)



Figure 5: Assembly instructions for LEGO car. The planner finds an assembly se-

quence that maintains good visibility for all the parts added in each step. Each step is
presented as a structural diagram. Notice that two consecutive steps must be compared
to discover which parts were added in each step.

The future parts visibility test checks that current parts will not
completely occlude any of the future parts U; — R. This test is sim-
ilar to the current parts test:

Score(Uj —R) = min (Vis(uj,R)) (5)

uj cUi—R

The total visibility score for R is the sum of these three scores. Ex-
amples of these scores are shown in figure 6. Empirically we have
found that visibility scores at or above 10% for previous part visibil-
ity, 50% for minimum current part visibility and 25% for minimum
future part visibility produce good results.

Maintaining the visibility of every part in a symmetric group is
less important than ensuring that some portion of all the symmetric
parts are visible. In step 3 of figure 5 for example, it is less impor-
tant that the wheel on the right side of the car are visible because
the two symmetric wheels on the left side are visible. Therefore
we modify the current and future parts visibility scores to group all
symmetric parts together and treat them as one large part, rather
than checking visibility for each symmetric part individually.

Optimizing the search: The search strategy outlined above eval-
uates all subsets of Uj. Therefore the size of the search space is 2N
where N is the number of parts in U;. For large assemblies the size
of the search space can become prohibitive.

Yet most subsets of R C U; fail one or more of the hard con-
straints. For example, if a part uj € U; is not in contact with any
part in A then any subset P that contains uj will fail the attachment

Score(A)) = 037
Score(R) = 0.72
Score(Uj-R) = 0.82
Score(Aj) = 0.21
Score(R) = 0.42
Score(Ui-R) = 0.83
Score(Aj) = 0.11
Score(R) = 0.53
Score(Ui-R) = 0.42

Figure 6: Visibility scores for three subsets R while generating step 2 of the LEGO car
instructions. The first subset has relatively good visibility for the previous parts A, the
current parts Rand the future parts U; — R. In the second subset, the seat replaces the
red part at the very back of the car. The current parts score, Score(R) is substantially
lower than for the first subset. The part indicated by the green arrow is occluded by
the seat and it sets the minimum visibility for the current parts to 0.42. In the third
subset the seat replaces the part indicated by the green arrow and the part symmetric to
it, on the left side of the car. In this case the part indicated by the green arrow will be
added in a future step and therefore it sets the future parts visibility score Score(U; —R)
to 0.42. Eventually the search finds that the first subset of these three maximizes the
visibility score and chooses it as the second step in the assembly instructions.

constraint. The same holds true if uj fails the interference con-
straint or the ordering constraint. Therefore, we can conservatively
cull parts from U; that cannot possibly be added to the assembly.
Starting with U; we form a new set U/ containing only the parts
uj € Uj that individually pass the interference, attachment and or-
dering constraints. Testing these constraints for single parts is fast
because each one simply requires a few look-ups. We then search
for the best subset of U/’ rather than Uj.

Since we are interested in the largest subsets of U; that pass all
the constraints, we can further accelerate the search by processing
the subsets in breadth-first order and using a heuristic to exit the
search early. We first consider U; itself, then each subset of U/
with one part removed, each subset with two parts removed and
so on. We exit the search as soon as we examine an entire level
of this subset tree and find at least one subset with visibility score
greater than an empirically determined threshold. In practice we
have found that this early exit significantly reduces the search time,
and generates the same results as performing the full search.

As we form subsets of U/ in breadth-first order we enforce the
grouping constraint by treating all parts in a symmetric group as a
single part. Suppose U/ contains a symmetric group of parts S =
{s1,52,...}. Instead of removing each s; individually from U/ to
form the subsets we remove the entire set S at once. Note that for
the early exit test this subset U/ — S, is treated as being one element
smaller in size than U/. That is, U/ — S is at the same level of the
subset tree as U/ —uj where u; is not part of a symmetric group.

4.2 Sequence Determination

While the search encodes many of the cognitive design principles
for producing effective assembly instructions, it does not encode
them all. We check two of the principles outside the main search to
improve the running time of the algorithm. In particular, the search
does not check that subsets R C U; contain at most one significant
part and it does not check for repetitive steps. Instead we allow the



Figure 7: Instructions for building a bookcase. Because the back of the bookcase is functionally part of the frame we specified an ordering constraint forcing the back to be attached
before the shelves. Sequencing significant parts: After the back of the bookcase is attached in step 4, the planner search selects the set of four shelves as the best subset of unattached
parts Q; to show in the next diagram. However, the shelves are labeled as significant parts, so the sequencing stage splits Q into four separate steps. Each shelf yields the same
visibility score, so they are sequenced in back-to-front order based on distance from the camera. Omitting repetitive steps: Each shelf is attached in exactly the same way. While
we show all four shelf attachments here, if the shelf attachment operations are marked as similar-actions the system will omit the last two shelf attachments, steps 8 and 9, and
jump directly to step 10 after step 7. Reorientation: Although the search decides that the shelves should be attached after step 4, the shelves would not be visible in the horizontal
orientation. Therefore the reorientation stage finds a new orientation for the bookshelf that ensures the shelves are visible.

search to find a subset Q; containing more than one significant part
or repetitive steps and deal with them in the sequence determination
stage, by further subdividing Q; into smaller subsets as necessary.

4.2.1 Handling Significant Parts

As we saw in section 2, people prefer that the significant parts in the
assembly are added one by one in a sequence of separate diagrams.
We maintain this design principle by splitting Q; if it contains more
than one significant part. To split Q; we first compute the visibility
score, as described above, for each part q; € Q;. The significant
parts are added in order from least visible to most visible. Ties in
the visibility score are resolved by adding the part furthest away
from the viewer first. This distance is computed from the center
of gj to the current camera viewpoint. The camera viewpoint is
usually the default, but may have been changed by the reorienta-
tion stage of the planner. An example of resolving such a tie is
presented in figure 7. If q; is symmetric to other parts in Q; all
of these symmetric parts are sequenced using the visibility/distance
ordering, before any other parts in Q;. This ensures that symmetric
groups of parts are added in sequence one after another. Finally all
of the non-significant parts in Q; are added to the assembly. This
sequencing stage produces a sequence Pj,Pj, 1, ... of subsets of Q;.

4.2.2 Omitting Repetitive Operations

Since repetitive operations can make instructions unnecessarily
long and tedious, we also omit repetitive part attachment opera-
tions in the sequence determination stage. Omitting repetitive steps
requires the user to label groups of parts that require similar attach-
ment operations as similar-action groups. Given a set of parts P;
we wish to attach we consider each py € Pj and check how many

parts in the similar-action group for py have already been attached.
If some similar-action parts have already been depicted in full de-
tail we skip depicting the attachment of py by removing it from P;.
Users can decide how many similar-action attachments to show in
full detail before they are skipped. By default only the first two
such attachments are shown in detail.

4.3 Reinserting Fasteners

Once we have chosen the non-fastener parts P; for each assembly
step we reinsert the fasteners connecting P;j to the earlier parts in
the assembly A;. If F is the set of all fasteners then we can find the
set of fasteners connecting any set of parts P to any other part in the
assembly as:

Fasteners(P) = Contacts(P)[|F (6)

Similarly we can determine the fasteners connecting P; to earlier
parts A; as:

Fasteners(Pj,Aj) = Fasteners(P,—)ﬂ Fasteners(Ai)  (7)

We add these fasteners to Pj before passing it to the next stage.

4.4 Reorientation

For some objects the default camera and object orientations can
be used for the entire set of assembly diagrams. In many cases
however, the default orientations may not be appropriate for every
assembly diagram. There are two primary reasons to reorient the
object or the camera: to put the object in a more natural orientation



for the current assembly operation and to improve the visibility of
parts. The reorientation stage handles both cases. If the object is re-
oriented we maintain the reorientation for all subsequent diagrams
in the sequence.

If the current assembly step contains a significant part for
which an orientation preference has been specified we first apply
the preference. We then consider whether reorienting the cam-
era could improve the visibility of the parts in the current step.
To determine if camera reorientation is necessary we compute
maxp.ep; (Vis(pk, Al UQi — pk)), the maximum visibility percent-
age for each part in the current subset P; with respect to all the
other parts in the assembly. If this upper bound on part visibility is
low (we have found that a threshold of 35% works well), we search
for a new camera orientation that will increase visibility.

The camera reorientation search computes the minimum visibil-
ity of all parts in P; from a small set of alternative viewpoints and
chooses the viewpoint producing the largest minimum visibility. As
Blanz et al. [1999] have empirically shown, people have a strong
preference for viewing most objects from above and at oblique an-
gles rather than front or side views. We select the alternative view-
points for our camera reorientation search based on these findings.
Since the object orientation is known, we have a frame of reference
and we can set the camera to look down at the object from either
the left or right side.

5 Presenter

The presenter renders the sequence of assembly steps output by the
planner as a series of either structural diagrams or action diagrams.
We describe techniques for rendering both types of diagrams.

5.1 Structural Diagrams

Each structural diagram presents all parts attached in the current
step j along with all the parts seen in earlier steps in their final
assembled positions. The parts are rendered using the current cam-
era viewpoint V; and object orientation M. Figure 5 shows an
example of such structural diagrams as generated by our system.
While such structural diagrams are typically provided with toys like
LEGO, for many assemblies they can be difficult to follow because
the user must compare before and after diagrams to figure out which
parts were added in each step.

5.2 Action Diagrams

Action diagrams are generally easier to follow than structural dia-
grams because they spatially separate the parts being added in each
step from the earlier parts. They also use diagrammatic elements to
show how and where the new parts attach to the earlier parts.

To generate an action diagram for assembly step j, we first
choose the direction in which we want to separate each of the parts
in P; from the earlier parts. We then set a separation distance for
each part and finally place the guidelines between the parts. We
consider each of these steps in detail.

5.2.1 Choosing the Separation Direction

Since the goal of an action diagram is to spatially separate the parts
being attached in the current step from the earlier parts, the sepa-
ration direction for each new part should be chosen to maximally
separate the new part from the earlier parts. Moreover, the direction
chosen for part p; € Pj must be interference-free with respect to the
parts attached earlier, Aj. That is, the separation direction must be
one of the directions in RemoveDirs(pj,Aj). We choose the separa-
tion direction for p; as the interference-free direction that allows p;
to escape the bounding box of earlier parts A; as fast as possible.

| p3 | [ pg_|
P2 |
| b3 | | Psa_| o T o
P2
p1 — = p1 — —

Structural Diagram Simple Action Diagram

Figure 8: One approach to generating action diagrams is to translate the parts being
attached in the current step pz, ps, ps away from the earlier parts p; by a fixed distance
along the separation direction (up in this case). But because all the new parts are moved
a fixed distance, this approach may not separate the new parts from one another.

. o) In this example, suppose
Ps . i We are adding part p3 to the
; assembly consisting of Aj =
(e ) (n 1 {p1,p2}. Of the four prin-
cipal directions in 2D, the
only free directions for ps are up and to the left. To choose be-
tween them we first look up Contacts(ps,Aj) and compute a bound-
ing box for these contact parts, as shown in green. We also look up
the faces of p3 that are in contact with parts in Aj and compute
the center of the bounding box for these contact faces, as shown in
red. We then compute the distance from the contact faces’ center
to the contact parts’ bounding box in each of the feasible removal
directions. The direction yielding the shortest distance is chosen
as the separation direction. In this case the separation direction for
ps3 is up, since this direction allows p3 to exit the bounding box of
the earlier parts p1 and p, fastest. If there is a tie in the shortest
distance we pick the direction that is pointing towards the camera
viewpoint.

5.2.2 Setting the Separation Distance

A simple technique for setting the separation distance for the action
diagram is to translate each part in the current step p; € Pj by a fixed
distance in the separation direction. However, as shown in figure 8,
this simple approach does not always produce the desired results.
While the new parts are separated from the earlier parts they may
not be separated from another. Notice that the parts sit one atop
another in the separation direction. To properly set the separation
distance for these parts we must first determine this stacking rela-
tionship between them.

Building Stacks We define a stack as a sequence of parts with
three properties: 1) all the parts (except the first) share the same
separation direction, 2) the parts share a stabbing line in the sepa-
ration direction and 3) each part is in contact with the next part in
the sequence. The first part in the sequence is called the base part.
It provides an anchor for the stack and may have a different sepa-
ration direction than the other parts in the stack. Creating an action
diagram requires building a tree of such stacks.

To build a tree of stacks from any set of parts P we begin by
grouping the parts in P by separation direction. Let G be one such
group. We look up the directional blocking graph for the parts in
G along the separation direction. Since the separation direction is
interference-free for all parts in G, this directional blocking graph
cannot contain cycles. However, the graph may be disjoint.

We iteratively build a tree of stacks from this blocking graph in
a greedy manner. Starting from a part g; at the root of the block-
ing graph we form a stabbing line through the center of g; and find
the maximal sequence of parts in P that include g; and meet the
other stack conditions (same separation direction, sequential con-
tact). We consider both directions of the stabbing line as we are
building these stack sequences. The furthest part on the stabbing
line in the negative separation direction is chosen as the base part



Guideline based
on contact faces

Guideline based bounding box

on object
bounding box

Figure 9: Side view of two wheels of the TV stand. (left) Guidelines (in green) gener-
ated from the center of the wheel bounding box (in red) do not pass through the stem
of the wheel and look awkward. (right) Guidelines generated from the center of the
contact faces’ bounding box correctly pass through the stem of the wheel.

for the stack and may have a different separation direction than the
other parts of the sequence. Each part added to this stack sequence
is removed from G. We then update the blocking graph for G and
iterate the stack-building procedure until G is empty.

Expanding Stacks Using these stack structures we can properly
separate all the parts in each stack. Given a stack expansion distance
d we start at the base of each stack and translate each subsequent
part in the stack sequence by distance d from the previous part along
the separation direction. In this way the total translational distance
accumulates as we move down the stack sequence. If a non-base
part p;j in the current stack is also a base part for another stack, we
translate all parts the other stack by the same distance we translate
pi. Thus translations propagate recursively through the stack tree.

To create action diagrams we build stacks for the current set of
parts Pj. We also combine the set of previously attached parts Aj
and include the group as a single part with no separation directions
in the stack building process. This grouped set of previous parts
provides a good base part for all of the stacks built in this stage.
Note that this stack building process can also be used to generate
exploded views of the entire object. In this case, we build stacks
from all of the parts in the assembly rather than just the parts in P;.

Most previous systems for generating exploded views have re-
quired users to manually specify the stacking relationships and ex-
plosion directions for each pair of parts [Rist et al. 1994; Driskill
and Cohen 1995]. A notable exception is Raab and Riiger’s [1996]
technique which uses non-linear 3D zooming to produce exploded
views. However, their technique relies on the ability to non-linearly
distort the space around each part.

5.2.3 Placing Guidelines

The stack structures allow the presenter to separate the new parts in
each assembly step from the earlier parts. However, one drawback
to separating these parts is that it can be difficult to figure out where
the new parts are supposed to attach to the earlier parts. The align-
ment between the new parts and previous parts may be ambiguous.
Guidelines running between the parts of the stack can remove this
alignment ambiguity. But, given a stack of parts the challenge in
generating guidelines is choosing where to position the guideline
endpoints. As shown in figure 9, simply connecting the center of
each part may not produce good results for some asymmetric parts.

Our approach to generating a guideline emanating from part p;
is to look up the set of contact faces between p; and the next part
in the stack sequence. We compute the center of the bounding box
for these contact faces and shoot a ray in the positive and negative
separation directions. We then set the guideline start point (end
point) to the intersection point of the negative (positive) ray with
the contact faces’ bounding box. This approach properly handles
many asymmetric parts without forcing users to manually specify
the guideline endpoints.

If either endpoint of the guideline contains a fastener we draw the
guideline as a dotted line. If the part at the end point of a guideline is
a significant part we draw the guideline as an arrow in the negative
separation direction to indicate how the significant part should be
brought in and attached to the assembly.

Model Execution Time Subsets
Name # Parts Precomp. Planner Vis. Scored/Total
Bookcase 9 20m 2s 47.70s 47.04s 13/885
Case27 25 24s 52.36s 45.88s 525/*
LEGO car 61 7m 23s 545.79s  477.06s 99/*
TV stand 9 33m 14s 25.19s 24.99s 12/882
80/20 Table 13 1m 27s 32.96s 27.59s 16/6840

Table 1: Performance of the planner running on a 500 Mhz SGI 320 Visual Worksta-
tion. The second column indicates the number of non-fastener parts in each model.
The subsets column reports the number of part subsets for which the planner computed
visibility scores as well as the total number of subsets an exhaustive search would have
considered. Since the total number of subsets is exponential in the number of parts
in the model we use *’s to indicate that the number is extremely large. The search
optimizations significantly reduce the number of subsets scored.

5.3 Rendering Style

We render the final assembly diagrams using the conventions of
technical illustration [Gooch et al. 1998]. We use Gouraud shading
and we render the edges of the parts in contrasting colors (black
lines for the lighter parts and white lines for the darker parts). Out-
lining the edges in this manner helps to differentiate the parts from
one another, especially if they are rendered in the same color.

6 Results

Several examples of assembly instructions generated with our sys-
tem have already been presented (figures 1, 5, 7). Two more exam-
ples are shown in figures 10 and 11.

The TV stand shown in figure 1 is based on the TV stand we used
in our human-subject experiments. The action diagrams show how
each part is to be attached to the earlier parts. Dotted guidelines in-
dicate where the fasteners connect parts and red arrows show how
significant parts can be moved into position for attachment. Be-
cause the left and right sides are symmetric, the planner adds them
to the assembly in consecutive steps. The input required to gener-
ate these instructions is described in figure 4. All four wheels are
added to the assembly at the same time in step 5 because they are
symmetric but are not specified to be significant parts.

To generate instructions for the LEGO car shown in figure 5,
the input consisted of the part geometry, default camera and object
orientations, and part symmetries. The planner is able to find a
sequence of steps that builds the model in natural layers from the
bottom up while maintaining good visibility for all the parts added
in each step. Symmetric parts are added together in the same step.

Like the LEGO car instructions, the instructions shown in fig-
ure 10 were generated from minimal input: part geometry, default
orientations and symmetries. Note that this object, which we re-
fer to as case27, was developed as a test for our system and does
not represent any real-world object. In figure 12 we show an ex-
ploded view of this object, which is generated using the same stack-
building machinery we developed to produce action diagrams.

The input required to generate the bookcase instructions shown
in figure 7 includes an ordering constraint forcing the frame to be
attached before the shelves. Since the back of the bookcase is part
of the frame, it is attached in step 4. The system then automatically
reorients the camera to ensure that the shelves will be visible. The
shelves are symmetric to one another and added in sequence. With
additional input specifying that the shelves are attached via similar
actions the system would automatically omit steps 8 and 9.

The table shown in figure 11 is built using a standardized set
of industrial parts developed by 80/20 Inc. [2003]. The parts are
modular and can be used to design many different types of assem-
blies; this table is just one example. In addition to the part geome-
try and default orientations, we specified a preferred orientation for
showing the trays resting on the table. This forces the reorientation
shown in step 13 of the instructions. We also labeled all the L-
shaped brackets as requiring similar attachment operations. Thus,



Figure 10: Assembly instructions for case27. The placement of the guidelines is automatically chosen to show how the parts attach to one another. The guidelines connect the centers
of the bounding boxes of contact faces rather than connecting the centers of parts. In step 3 the guidelines properly show how the rectangular parts slide into the main hull.

1 2 3

4 5

=

Figure 11: Assembly instructions for a table built from the 80/20 standardized parts. The first six steps detail how two of the L-shaped brackets are used to attach parts of the frame.
The planner then omits these details in subsequent steps. Because the fasteners are much smaller than the other parts, they can be difficult to see in the original diagrams. We manually

added the insets for the first 3 steps to make the fasteners easier to see.

only the first two bracket attachments (steps 1 through 6) are shown
in full detail. In step 7 and beyond the instructions no longer show
the nuts and bolts required to secure the brackets to the frame. We
manually added the insets for the first 3 steps to make the fasten-
ers easier to see. Seligmann and Feiner [1991] have proposed an
automated approach for designing such insets, and we are currently
exploring the possibility of adding this technique to our system.

The performance of our system is presented in table 1. The run-
ning time of the system is dominated by the low level geometric and
visibility computations. We have not focused on optimizing these
parts of the system and believe that more sophisticated low-level
algorithms could increase the speed of that code. The final column
of the table reports the number of subsets for which we compute
the visibility score as well as the total number of subsets an exhaus-
tive search would have to score. As the table shows, our search
optimizations significantly reduce the number of subsets scored.

7 Discussion

While our system can generate assembly instructions for a variety
of objects, it also makes several basic assumptions that we hope to
relax in future work.

Two-level hierarchy: The system operates on the two bottom lev-
els of the hierarchy of operations (joining significant parts and at-
taching fasteners). Extending the system to handle subassemblies
would allow for larger, more complicated assemblies.

Single-step translations along principal axes: We only con-
sider single-step translational motions along the principal axes
when computing the blocking relationships between parts. Using
Guibas et al.’s [1995] approach to handle multi-step translations
and rotations in all motion directions would increase the types of
assemblies our system could handle.



Figure 12: Exploded view of case27. Our stack-building procedure can be used on the
entire assembly rather than individual steps to produce such exploded views. The algo-
rithm properly handles building stacks for different separation directions. As shown in
figure 10, the four rods at the top of the assembly slide into the paddles and rectangular
parts below. After expanding the stacks, the rods no longer align with the parts they
slide into. Therefore the system does not generate guidelines showing how the rods
attach to the assembly.

Local interference: Blocking relationships are computed for lo-
cal pairs of parts that are in contact with one another. How-
ever it is possible that parts which are not in contact block one
another. Therefore global interference detection would impose
stronger, more robust feasibility constraints on the assembly se-
quence. Wilson [1992] has proposed techniques for computing this
type of global interference.

Input of semantic/functional knowledge: Our system is de-
signed to use semantic and functional knowledge about the parts
when it is provided. In practice we have supplied this information
manually. However it may be possible to infer some of these prop-
erties from the part geometry based on models of perception. For
example, it may be possible to automatically group parts that are
perceived as roughly symmetric.

Although these assumptions do limit the types of assemblies our
system can handle, we believe that the overall framework of the
system is sound. Relaxing any of these assumptions would require
localized changes to modules within the framework rather changes
to the framework itself.

8 Conclusions

We have described a set of design principles for designing effective
assembly instructions that are easy to understand and follow. The
principles are based on cognitive psychology research examining

how people mentally represent and communicate the process of as-
sembling an object. We have also demonstrated an automated sys-
tem that instantiates these design principles and can substantially
reduce the effort required to produce good assembly instructions.

Our key insight is that planning a sequence of assembly opera-
tions that is easy to understand and presenting those operations in
a clear and concise manner are strongly interrelated problems. Our
system is based on this idea and considers both problems in parallel
as it is designing the instructions.

Acknowledgements: We thank Boris Yamrom for his invaluable contribu-
tions to our system. Christina Vincent helped us run the psychology experiments.
This work was supported by ONR grants N000140210534, N000140110717 and
N000140010649 “Explaining Using Depictions and Descriptions”.

References

80/20 INC. 2003. www.8020.net.

BLANZ, V., TARR, M. J., AND BULTHOFF, H. H. 1999. What object attributes
determine canonical views. Perception 28, 575-600.

BuTz, A. 1997. Anymation with CATHI. In Proceedings of AAAI/IAAI ' 97 in Provi-
dence/ Rhode island, AAAI Press, 957-962.

DE MELLO, L. S. H., AND SANDERSON, A. C. 1991. A correct and complete
algorithm for the generation of mechanical assembly sequences. |EEE Transactions
on Robotics and Automation 7, 2, 228-240.

DRisKILL, E., AND COHEN, E. 1995. Interactive design, analysis and illustration of
assemblies. In 1995 Symposium on Interactive 3D Graphics, ACM Press, 27-33.

FEINER, S. 1985. APEX An experiment in the automated creation of pictorial expla-
nations. |EEE Computer Graphics and Applications 5, 11, 29-37.

GoocH, A., GOocH, B., SHIRLEY, P. S., AND COHEN, E. 1998. A non-
photorealistic lighting model for automatic technical illustration. In Proceedings of
SIGGRAPH 98, 447-452.

GuIBAS, L. J., HALPERIN, D., HIRUKAWA, H., LATOMBE, J.-C., AND WILSON,
R. H. 1995. A simple and efficient procedure for polyhedral assembly partitioning
under infinitesimal motions. In IEEE International Conference on Robotics and
Automation, IEEE, 2553-2560.

HEISER, J., AND TVERSKY, B. 2002. How to put things together. In Poster presenta-
tion at the meeting of the Psychonomics Society, Psychonomics Society.

LIN, M. C., AND CANNY, J. F. 1991. A fast algorithm for incremental distance
calculation. In IEEE Intern. Conf. on Robotics and Automation, IEEE, 1008-1014.

MACKINLAY, J. 1986. Automating the design of graphical presentations of relational
information. ACM Transactions on Graphics5, 2, 110-141.

MIJKSENAAR, P., AND WESTENDORP, P. 1999. Open Here: The Art of Instructional
Design. Joost Elffers Books, New York.

Novick, L. R., AND MORSE, D. L. 2000. Folding a fish, making a mushroom:
The role of diagrams in executing assembly procedures. Memory & Cognition 28,
1242-1256.

PALMER, S., RoscH, E., AND CHASE, P. 1981. Canonical perspective and the
perception of objects. In Attention and Performance 1X, 135-151.

QUINLAN, S. 1994. Efficient distance computation between non-convex objects. In
|EEE Intern. Conf. on Robotics and Automation, IEEE, 3324-3329.

RAAB, A., AND RUGER, M. 1996. 3D-ZOOM interactive visualization of structures
and relations in complex graphics. In 3D Image Analysis and Synthesis, 87-93.
RisT, T., KRUGER, A., SCHNEIDER, G., AND ZIMMERMAN, D. 1994. AWI A
workbench for semi-automated illustration design. In Proc. of Advanced Visual

Interfaces, 59-68.

ROMNEY, B., GODARD, C., GOLDWASSER, M., AND RAMKUMAR, G. 1995. An
efficient system for geometric assembly sequence generation. Proc. ASME Inter-
national Computersin Engineering Conference, 699-712.

SELIGMANN, D. D., AND FEINER, S. 1991. Automated generation of intent-based
3D illustrations. In Proceedings of SGGRAPH 91, 123-132.

STROTHOTTE, T. 1998. Computational Visualization, Graphics, Abstraction and
Interactivity. Springer, ch. 13, 215-240.

TVERSKY, B., AND HEMENWAY, K. 1984. Objects, parts and categories. Journal of
Experimental Psychology: General 113, 169-193.

TVERSKY, B., AGRAWALA, M., HEISER, J., LEE, P., HANRAHAN, P., STOLTE,
C., AND DANIEL, M.-P. Submitted. Cognitive design principles for automated
generation of visualizations.

WILSON, R. H. 1992. On Geometric Assembly Planning. PhD thesis, Stanford
University.

WOLTER, J. D. 1989. On the automatic generation of assembly plans. In Proc. |IEEE
International Conference on Robotics and Automation, 62—68.

ZACKS, J., TVERSKY, B., AND IYER, G. 2001. Perceiving, remembering and com-
municating structure in events. Journal of Experimental Psychology: General 136,
29-58.



