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Abstract

We present a novel technique for large deformations on 3D meshes
using the volumetric graph Laplacian. We first construct a graph
representing the volume inside the input mesh. The graph need not
form a solid meshing of the input mesh’s interior; its edges sim-
ply connect nearby points in the volume. This graph’s Laplacian
encodes volumetric details as the difference between each point
in the graph and the average of its neighbors. Preserving these
volumetric details during deformation imposes a volumetric con-
straint that prevents unnatural changes in volume. We also include
in the graph points a short distance outside the mesh to avoid lo-
cal self-intersections. Volumetric detail preservation is represented
by a quadric energy function. Minimizing it preserves details in
a least-squares sense, distributing error uniformly over the whole
deformed mesh. It can also be combined with conventional con-
straints involving surface positions, details or smoothness, and effi-
ciently minimized by solving a sparse linear system.

We apply this technique in a 2D curve-based deformation system
allowing novice users to create pleasing deformations with little
effort. A novel application of this system is to apply nonrigid and
exaggerated deformations of 2D cartoon characters to 3D meshes.
We demonstrate our system’s potential with several examples.

Keywords: differential domain methods, deformation retargeting,
local transform propagation, volumetric details.

1 Introduction

Mesh deformation is useful in a variety of applications in computer
modeling and animation. Many successful techniques have been
developed to help artists sculpt stylized body shapes and deforma-
tions for 3D characters. In particular, multi-resolution techniques
and recently introduced differential domain methods are very effec-
tive in preserving surface details, which is important for generating
high-quality results. However, large deformations, such as those
found with characters performing nonrigid and highly exaggerated
movements, remain challenging today, and existing techniques of-
ten produce implausible results with unnatural volume changes.

We present a novel deformation technique that achieves convincing
results for large deformations. It is based on the volumetric graph
Laplacian (VGL), which represents volumetric details as the dif-
ference between each point in a 3D volume and the average of its
neighboring points in a graph. VGL inherits the strengths of recent
differential domain techniques [Yu et al. 2004; Sorkine et al. 2004].
In particular, it preserves surface details and produces visually-
pleasing deformation results by distributing errors globally through
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Figure 1: Large deformation of the Stanford Armadillo. Left: original mesh;

middle: deformed result using Poisson mesh editing; right: deformed result

using our technique. Poisson mesh editing causes unnatural shrinkage es-

pecially in the model’s right thigh.

least-squares minimization. But by working in the volumetric do-
main instead of on the mesh surface, VGL can effectively impose
volumetric constraints to avoid unnatural volume changes and local
self-intersections (Figure 1). Volumetric constraints are represented
by a quadric energy function which can be efficiently minimized
by solving a sparse linear system, and easily combined with other
widely-used surface constraints (e.g., on surface positions, surface
details [Sorkine et al. 2004], and surface smoothness [Botsch and
Kobbelt 2004]).

To apply the volumetric graph Laplacian to a triangular mesh,
we construct a volumetric graph which includes the original mesh
points as well as points derived from a simple lattice lying inside
the mesh. These points are connected by graph edges which are
a superset of the edges of the original mesh. The graph need not
form a meshing (volumetric tessellation into tetrahedra or other fi-
nite elements) of the mesh interior. This flexibility makes it easy to
construct. The deformation is specified by identifying a limited set
of points on the original mesh, typically a curve, and where these
points go as a result of the deformation. A quadric energy function
is then generated whose minimum maps the points to their specified
destination while maintaining surface detail and roughly preserving
volume.

Our main contribution is to demonstrate that the problem of large
deformation can be effectively solved by using a volumetric dif-
ferential operator. Previous differential approaches [Yu et al. 2004;
Sorkine et al. 2004] considered only surface operators. A naive way
to extend these operators from surfaces to solids is to define them
over a tetrahedral mesh of the object interior. However, solidly
meshing a complex object is notoriously difficult. To our knowl-
edge, available packages remesh geometry and disturb its connec-
tivity, violating a common requirement in mesh deformation. Solid
meshing also implies many constraints (e.g., that no tetrahedron be
flipped and that each interior vertex remain in the visual hull of its
neighbors) that make it harder to economically distribute interior
points and add an “exterior shell” as we do to prevent local self-
intersection. Our key insight is that the volumetric Laplacian op-
erator can be applied to an easy-to-build volumetric graph without
meshing surface interiors.

Using the method, we have developed an interactive deformation
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system based on 2D curves. Manipulating vertices in 3D space
is tedious and requires artistic skill; our system allows novices to
create pleasing results with a few, simple operations. A novel ap-
plication of this system is to transfer the exaggerated deformations
of 2D cartoon characters to 3D models by specifying a set of cor-
responding curves between the images and models. Our technique
does not require the skeletons and key poses of the 3D models as
input and can handle a wide range of nonrigid deformations.

2 Related Work

Mesh Deformation Energy minimization has long been used to
design smooth surfaces [Welch and Witkin 1994; Taubin 1995].
Recently, a freeform modeling system allows users to define basis
functions customized to a given design task [Botsch and Kobbelt
2004]. The resulting linear system handles arbitrary regions and
piecewise boundary conditions with smoothness ranging continu-
ously from C0 to C2.

Freeform deformation (FFD) is used in commercial software such
as 3D Studio and Maya. A general treatment can be found in [Mil-
liron et al. 2002]. FFD methods can be classified as lattice-based
[Sederberg and Parry 1986; Coquillart 1990; MacCracken and Joy
1996], curve-based [Barr 1984; Singh and Fiume 1998], or point-
based [Hsu et al. 1992; Bendels and Klein 2003]. Some approaches
[Rappoport et al. 1995; Hirota et al. 1999] preserve the global vol-
ume of the object.

While energy minimization and FFD methods work well for smooth
surfaces, multiresolution editing [Zorin et al. 1997; Kobbelt et al.
1998; Guskov et al. 1999] is better suited for detailed geometry
such as that acquired from scanning devices. A model is first de-
composed into a smooth base shape and a set of geometric details,
represented as displacements in a local coordinate frame. After
modifying the base shape with some freeform deformation, the de-
tails can be re-inserted. The problem with these methods is that the
displacement vectors are manipulated independently at each vertex.
Artifacts can appear in highly deformed regions because details are
not coupled and preserved uniformly over the whole surface.

Displacement volumes [Botsch and Kobbelt 2003] extend the
multi-resolution approach from surfaces to volumes, and coin the
term “volumetric details” which we borrow here. Though the
method addresses problems with local self-intersection, it may con-
centrate errors and thus artifacts in highly deformed regions such
as the bend shown in its Figure 6c and Figure 7c. These artifacts
are exacerbated by the iterative relaxation performed to enforce the
nonlinear volumetric constraints.

Our approach builds on recent work that encodes surface details
differentially; i.e., as local differences or derivatives. Differential
domain methods, including ours, minimize an energy function rep-
resenting how well the details are preserved after a deformation
and can be solved as a sparse linear system. Poisson meshes [Yu
et al. 2004] manipulate gradients of the mesh’s coordinate func-
tions using an FFD and then reconstruct the surface from the Pois-
son equation. Laplacian coordinates [Alexa 2003; Lipman et al.
2004; Sorkine et al. 2004] represent surface details as differences
from a local mean. We extend these ideas to the volumetric domain
to solve the problem of large deformations.

Mesh deformation is closely related to shape interpolation and mor-
phing. Morphing can be extended from surfaces to solids by mini-
mizing distortions in a local volume [Alexa et al. 2000]. A tetra-
hedral mesh must be constructed for the input triangular mesh,
which we avoid by using a simpler volumetric graph. [Sheffer and
Kraevoy 2004] propose a morphing and deformation method based
on pyramid coordinates. Reconstruction from pyramid coordinates
to vertex coordinates requires solving a nonlinear system.

(a) Laplacian surface (b) Poisson mesh (c) VGL

Figure 2: Large twist deformation.

(a) Laplacian surface (b) Poisson mesh (c) VGL

Figure 3: Large bend deformation.

2D Curve-based Deformation Since manipulating 3D vertices
is tedious, some methods modify 3D objects by 2D curve editing.
The Teddy system [Igarashi et al. 1999] allows users to create 3D
objects by sketching 2D curves. It also supports a global deforma-
tion operation based on stroke warping. Recently, curve analogies
[Hertzmann et al. 2002] have been extended to surfaces by applying
to 3D models the transformation determined by two curves [Zelinka
and Garland 2004]. The authors further propose a sketch-based in-
terface [Kho and Garland 2005], which allows users to bend and
twist models by sketching 2D curves.

Deformation Retargeting Reusing the deformation created for
one 2D or 3D shape to deform another is often useful, especially
for movie production. [Bregler et al. 2002] capture the affine defor-
mation from existing 2D cartoon animations and retarget it onto 2D
drawings and 3D shapes. [Favreau et al. 2004] animate 3D models
of animals from existing live video sequences. Both methods re-
quire the skeleton and key poses of the model as input. Recently,
[Sumner and Popović 2004] propose a technique to transfer the de-
formation of a source triangle mesh onto a target triangle mesh.

3 Deformation on Volumetric Graphs

Let M = (V,K) be the triangular mesh we want to deform, where V

is a set of n point positions V = {pi ∈ R3|1 ≤ i ≤ n}, and K is an
abstract simplicial complex which contains all the vertex connec-
tivity information. There are three types of elements in K, vertices
{i}, edges {i, j} and faces {i, j,k}.

3.1 Laplacian Deformation on Abstract Graphs

Suppose G = (P,E) is a graph, where P is a set of N point positions

P = {pi ∈ R3|1 ≤ i ≤ N}, and E = {(i, j)| pi is connected to p j}
is the set of edges. The Laplacian of a graph is analogous to the
Laplace operator on manifolds [Chung 1997] and computes the dif-
ference between each point pi in the graph G and a linear combina-
tion of its neighboring points:

δi = LG(pi) = pi − ∑
j∈N (i)

wi j p j, (1)
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Figure 4: Volumetric graph example. Left: Gin; right: Gout . The edges of

the input mesh are marked in blue.

where N (i) = { j |{i, j} ∈ E} are the edge neighbors, wi j is the
weight for point p j, and δi is the Laplacian coordinate of the point
pi in graph G. LG is called the Laplace operator of the graph G.

The weights wi j should be positive and satisfy ∑ j∈N (i) wi j =

1. The simplest weighting is uniform weighting wi j = 1/|N (i)|
[Taubin 1995; Sorkine et al. 2004]. We use a more complicated
weighting scheme, described in Section 3.3.

To control a deformation, the user inputs the deformed positions
qi, i ∈ {1, ...,m} for a subset of the N mesh vertices. This informa-
tion is used to compute a new (deformed) Laplacian coordinate δ ′

i
for each point i in the graph. The deformed positions of the mesh
vertices p′i are then obtained by solving the following quadric min-
imization problem:

min
p′i

(

N

∑
i=1

‖LG(p′i)−δ ′
i ‖

2 +α
m

∑
i=1

‖p′i −qi‖
2

)

. (2)

The first term represents preservation of local detail and the second
constrains the positions of those vertices directly specified by the
user. The parameter α balances these two objectives.

The deformed Laplacian coordinates are computed via

δ ′
i = Ti δi

where δi is the Laplacian coordinate in the rest pose, defined in (1),
and Ti transforms it into the deformed pose. A general transform
Ti which includes anisotropic scaling is too powerful and can “fit
away” local detail. The solution is to restrict Ti to a rotation and
isotropic scale [Sorkine et al. 2004].

Given the deformed positions of a subset of the vertices qi, many
methods can be used to obtain Ti. We use a method, described
in Section 3.3, which propagates the local transformation from the
specified region of deformation to the entire mesh, blending the
transform towards the identity away from the deformation site.

If the graph is a triangular mesh, the graph Laplacian is identical
to the mesh Laplacian. Using the mesh Laplacian to encode sur-
face details, [Alexa 2003; Lipman et al. 2004; Sorkine et al. 2004]
preserve detailed geometric structure over a wide range of editing
operations. For large deformations, these methods exhibit unnatural
volume changes (Fig. 2a) or local self-intersections (Fig. 3a). The
following section describes how to impose volumetric constraints
which reduce such undesirable effects, by constructing a volumet-
ric graph for the mesh.

3.2 Constructing the Volumetric Graph

Like [Botsch and Kobbelt 2003], our method avoids large volume
changes and local self-intersections but does not guarantee elimi-
nation of global self-intersections, whose prevention must be man-
aged by the user. We build two kinds of volumetric graphs: an
inside graph Gin fills the interior volume of the mesh and prevents

(a) (b)

(c) (d)

Figure 5: Volumetric graph construction.

(a) Boundary edges (b) Interior edges

Figure 6: Types of edge connections in the volumetric graph.

large volume changes, while an outside graph Gout prevents local
self-intersection.

A natural method for obtaining Gin is to tetrahedralize the interior
volume of a surface mesh [Shewchuk 1998; Cutler et al. 2004; Brid-
son et al. 2004]. However, tetrahedral mesh generation is difficult to
implement and computationally expensive (see the detailed survey
by Owen [1998]). It is also hard to make robust and often pro-
duces too many or poorly shaped tetrahedra for complicated mod-
els [Shewchuk 1998]. We describe a simple method to produce the
less-restrictive volumetric graph.

As Figure 5 illustrates, the algorithm consists of four steps:

• Construct an inner shell Min for the mesh M by offsetting each
vertex a distance in the direction opposite its normal (Fig.5a).

• Embed Min and M in a body-centered cubic (BCC) lattice
(Fig. 6b). Remove lattice nodes outside Min (Fig. 5b).

• Build edge connections among M, Min, and lattice nodes
(Fig. 5c).

• Simplify the graph using edge collapse and smooth the graph
(Fig. 5d).

The purpose of the inner shell Min is to ensure that inner points are
inserted even within thin features, like the tail of the cat, that may
be missed by lattice sampling. To compute the inner shell, we use
an an iterative method based on simplification envelopes [Cohen
et al. 1996]. In each iteration, we attempt to move each vertex
a fraction of the average edge length opposite to its normal vector.
After moving a vertex, we test its adjacent triangles for intersections
with each other and the rest of the model. If no intersections are
found, we accept the step; otherwise, we reject it and move the
vertex back. The iterations terminate when all vertices have moved
the desired distance or can no longer move.

The BCC lattice consists of nodes at every point of a Cartesian grid
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along with the cell centers (Figure 6b). Node locations may be
viewed as belonging to two interlaced grids. This lattice occurs
as a crystal structure in nature with desirable rigidity properties.
Currently we set the grid interval to the average edge length.

Three types of edge connections form an initial graph. First, each
vertex in M is connected to its corresponding vertex in Min (Fig-
ure 6a). The shorter diagonal for each prism face is included as
well. Second, each inner node of the BCC lattice is connected with
its eight nearest neighbors in the other interlaced grid (Figure 6b).
Third, connections are made between Min and nodes of the BCC
lattice. For each edge in the BCC lattice that intersects Min and has
at least one node inside Min, we connect the BCC lattice node inside
Min to the point in Min closest to this intersection.

Simplification and smoothing on the initial graph make it more uni-
form. We visit the graph edges in increasing order of length. If
the length of an edge is less than a threshold (half the average edge
length of M), it is collapsed to the edge’s midpoint. After simpli-
fication, several smoothing iterations (three in our implementation)
are performed in which each point is moved to the average of its
neighbors. Note that neither simplification nor smoothing are ap-
plied to the vertices of M.

Construction of Gout is simpler. We use the iterative normal-offset
method described previously, but toward the outside rather than in-
side the surface, to form Mout . Then we build the connection be-
tween M and Mout in the same way as between M and Min.

Note that both Gin and Gout are intermediate data structures never
directly viewed by the user and discarded after the user interaction.
They serve only to constrain the deformation of the mesh surface.
Though intersections of Min and Mout with themselves and with M
can occur, especially on meshes containing regions of high curva-
ture, we find this causes no difficulty in our interactive system.

3.3 Deforming the Volumetric Graph

To balance between preserving the original surface’s details and
constraining the volume, we modify the energy function in Equa-
tion (2) to the following general form:

n

∑
i=1

‖LM(p′i)−ε ′i‖
2 +α

m

∑
i=1

‖p′i −qi‖
2 +β

N

∑
i=1

‖LG′(p′i)−δ ′
i ‖

2 (3)

where the first n points in graph G belong to the mesh M. LM is
the discrete mesh Laplacian operator [Desbrun et al. 1999; Meyer
et al. 2002; Sorkine et al. 2004]. G′ is the sub-graph of G formed
by removing those edges belonging to M. For points on the origi-
nal mesh M, ε ′i (1 ≤ i ≤ n) are the mesh Laplacian coordinates in
the deformed coordinate frame. For points in the volumetric graph
G′, δ ′

i (1 ≤ i ≤ N) are the graph Laplacian coordinates in the de-
formed frame. Energy is thus decomposed into three terms cor-
responding to preservation of surface details, enforcement of the
user’s chosen deformation locations, and preservation of volumet-
ric details/rigidity.

β balances between surface and volumetric details. We actually

specify β̃ where β = nβ̃/N. The n/N factor normalizes the weight
so that it is insensitive to the lattice density of the volumetric graph.

With this normalization, we find that β̃ = 1 works well for preserv-
ing volume and preventing self-intersections. The α parameter is
not normalized because we want the constraint strength to depend
on the number of constrained points relative to the total number of
mesh points. We find 0.1 < α < 1 works well for our examples. It
is set to 0.2 by default.

Note that our volumetric constraint in Equation (3) could also
be combined with the quadric smoothness energy in [Botsch and

(a) (b) (c)

Figure 7: Curve-based deformation. (a) original mesh and the control

curve; (b) strength field (red=1, blue=0); (c) deformed mesh.

Kobbelt 2004]. We do not do this because we focus on deforming
models with significant geometric detail.

Propagation of Local Transforms To obtain the local trans-
forms Ti that take the Laplacian coordinates in the rest frame, δi

and εi, to the new Laplacian coordinates δ ′
i and ε ′i in the deformed

frame, we adopt the WIRE deformation method [Singh and Fiume
1998]. A sequence of mesh vertices forming a curve is selected and
then deformed to a new state. This curve controls the deformation
and defines the qi (Figure 7a).

The control curve only specifies where vertices on the curve deform
to. The propagation algorithm first determines where neighboring
graph points deform to, then infers local transforms at the curve
points, and finally propagates the transforms over the whole mesh.
We begin by finding mesh neighbors of the qi and obtaining their
deformed positions using WIRE. To review this method, let C(u)
and C′(u) be the original and deformed control curves respectively,
parameterized by arc length u ∈ [0,1]. Given some neighboring

point p ∈ R3, let up ∈ [0,1] be the parameter value minimizing dis-
tance between p and the curve C(u). The deformation maps p to p′

such that C maps to C′ and points nearby move analogously:

p′ = C′(up)+R(up)
(

s(up)(p−C(up))
)

.

R(u) is a 3×3 rotation matrix which takes a tangent vector t(u) on
C and maps it to its corresponding tangent vector t ′(u) on C′ by
rotating around t(u)× t ′(u). s(u) is a scale factor. It is computed at
each curve vertex as the ratio of the sum of lengths of its adjacent
edges in C′ over this length sum in C, and then defined continuously
over u by linear interpolation.

We now have the deformed coordinates for each point on the con-
trol curve and for its 1-ring neighbors on the mesh. We proceed
to compute the Ti at each point on the control curve. A rotation is
defined by computing a normal and a tangent vector as the perpen-
dicular projection of one edge vector with this normal. The normal
is computed as a linear combination weighted by face area of face
normals around the mesh point i. The rotation is represented as a
quaternion, which means the rotation angle should be less than 180
degrees. The scale factor of Ti is given by s(up).

The transform is then propagated from the control curve to all graph
points p via a deformation strength field f (p) which decays away
from the deformation site (Figure 7b). Constant, linear, and gaus-
sian strength fields can be chosen and are based on the shortest edge
path (discrete geodesic distance) from p to the curve.

The simplest propagation scheme assigns to p a rotation and scale
from the point qp on the control curve closest to p. A smoother
result is obtained by computing a weighted average over all the ver-
tices on the control curve instead of the closest. Weighting by the
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(a) Uniform (b) Edge len. reciprocal (c) Heat kernel (d) Our scheme

Figure 8: Weighting schemes.

reciprocal of distance 1/‖p−qi‖g or by a Gaussian function

exp

(

−
(‖p−qi‖g −‖p−qp‖g)

2

2σ2

)

works best in our experiments. ‖p − q‖g denotes the discrete
geodesic distance from p to q. σ controls the width of the Gaus-
sian. Weighting between multiple curves is similar, except that the
quaternion and scale must be accumulated over multiple curves.

The final transform matrix at point p is:

Tp = f (p) T̃p +(1− f (p)) I

where T̃p is p’s weighted average transform. This formula sim-
ply blends that transform with the identity using the strength field.
Laplacian coordinates thus approach their original (rest) state out-
side the deformation’s influence region.

This propagation scheme is similar to the method in [Yu et al.
2004]. The difference is that we compute the transform for each
graph vertex and apply it to its Laplacian coordinate. [Yu et al.
2004] compute a transform for each triangle and apply it to the
triangle’s vertices. Independently transforming each triangle dis-
connects it from its neighbors in the mesh, but solving the Poisson
equation stitches triangles back together, preserving each triangle’s
orientation and scale in a least-squares sense. Extending this idea
to a volumetric domain requires a tetrahedral mesh.

Rather than computing transforms at the deformation site and prop-
agating them away from it, [Sorkine et al. 2004] introduce addi-
tional degrees of freedom by defining an unknown, least-squares
optimal transform which takes a local neighborhood of points from
the rest state to the deformed state. The transform is restricted to
rotations and scales in order to prevent loss of local detail, as is
the case for us too. For the system to remain quadratic and thus
easily solvable, rotations are defined using the small-angle approxi-
mation. This is a poor approximation for large deformations, which
then require more complicated, iterative refinement.

Weighting Scheme While uniform weighting was effective in
[Sorkine et al. 2004], we find that a different scheme improves re-
sults (see Figure 8). Our geometric models come from modeling
software and scanning devices; many are not uniformly tessellated.
It may also be that our method of local transform propagation is
more sensitive to the weighting.

For the mesh Laplacian LM , we use the cotangent weights [Des-
brun et al. 1999]:

wi j ∝ (cotαi j + cotβi j),

where αi j = 6 (pi, p j−1, p j) and βi j = 6 (pi, p j+1, p j).

For the graph Laplacian LG′ , we compute the weights by solving
a quadratic programming problem. Independently for each graph

vertex i, the following problem is solved to obtain the weights wi j

(for clarity we drop the i subscript):

min
w j



‖pi − ∑
j∈N (i)

w j p j‖
2 +λ

(

∑
j∈N (i)

w j ‖pi − p j‖

)2




subject to ∑
j∈N (i)

w j = 1 and w j > ξ .

The first energy term aims at weights that generate Laplacian coor-
dinates of smallest magnitude. The second term is based on a scale-
dependent umbrella operator [Fujiwara 1995; Desbrun et al. 1999]
which prefers weights in inverse proportion to the edge lengths. The
parameter λ balances these two objectives, while the parameter ξ
prevents small weights. Setting λ and ξ both to 0.01 achieves good
results in all our experiments.

Figure 8 compares weighting schemes, including uniform (a), re-
ciprocal of edge length (b), and heat kernel (decaying exponential
function of squared distance) (c). Our result (d) is smoother and
more uniform.

Quadric Energy Minimization Given the new Laplacian coor-
dinates we can minimize the quadric energy in Equation (3). We
solve the following equations:

LM(p′i)+β LG′(p′i) = ε ′i +β δ ′
i , i ∈ 1, ...,n,

β LG′(p′i) = β δ ′
i , i ∈ n+1, ...,N,

α p′i = α q′i, i ∈ 1, ...,m

This is a sparse linear system Ax = b. The matrix A is dependent
only on the graph before deformation while b is also dependent on
the current Laplacian coordinates and position constraints. There-
fore, A is fixed as long as we do not switch the mesh or graph and
the control points while b changes constantly during interactive de-
formation. Thus, we precompute A−1 using LU decomposition and
dynamically execute the back substitution step to obtain A−1 b.

Multiresolution Methods Multiresolution editing can be used
to accelerate differential methods, especially for very large models
[Yu et al. 2004]. For example, the Stanford armadillo model con-
tains 170K vertices. Its volumetric graph then generates almost six
times as many variables as vertices in the linear system to be solved.
Solving such a large system is expensive for an interactive system.
To reduce computation, we use the method of [Guskov et al. 1999].
A simplified mesh with fewer vertices (15K for the armadillo) is
generated. After deforming this mesh using our method, details
can be added back to get the deformed high resolution mesh.

4 Deformation From 2D Curves

4.1 2D Curve-based Deformation System

The basic mode of interaction in our system is as follows. The
user first specifies a curve on the mesh surface, called the original
control curve, by selecting a sequence of mesh vertices which are
connected by the shortest edge (Dijkstra) path. This 3D curve is
projected onto one or more planes to obtain 2D curves which can
be edited easily. After editing, the modified 2D curves are projected
back to 3D to get the deformed control curve, which forms the basis
for deformation of the previous section.
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Figure 9: Deformation retargeting. Two control curves in red are shown

on the 3D mesh (top row). Their deformation is driven by cartoon curves

selected by the user and shown in the bottom row.

Curve Projection Given the original control curve, the system
automatically selects the projection plane based on its average nor-
mal and principal vectors. The principal vectors are computed as
the two eigenvectors corresponding to the largest eigenvalues from
a principal component analysis (PCA) over the curve’s vertices. In
most cases, the cross product of the average normal and the first
principal vector provides a satisfactory plane. When the length of
the average normal vector is small, as for a closed planar curve, we
use the two principal vectors instead. The user can also directly
choose or modify the projection chosen by the system.

Curve Editing Projected 2D curves inherit geometric detail from
the original mesh which complicates editing. Multiresolution curve
editing [Finkelstein and Salesin 1994] provides one solution for B-
spline curves. We use an editing method for discrete curves based
on Laplacian coordinates [Sorkine et al. 2004]. The Laplacian co-
ordinate of a curve vertex is the difference between its position and
the average position of its two adjacent neighbors, or single neigh-
bor for terminal vertices.

The discrete 2D curve to be edited is denoted as C. A cubic B-
spline curve Cb is first computed as a least-squares fit to C, repre-
senting C’s low frequencies. Then a discrete version of Cb, denoted
Cd , is computed by mapping each vertex of C onto Cb using pro-
portional arc-length mapping. The simple B-spline curve Cb can
now be edited conveniently. After editing, we obtain the modified
B-spline curve C′

b and a new discrete version C′
d . These curves in-

dicate the user’s desired deformation but lack the original curve’s
detail. To restore it, at each vertex of C we find the unique rota-
tion and scale that map its location from Cd to C′

d . Applying this
transformation to the Laplacian coordinates on C and solving equa-
tion (2) (without the second point constraint term) over the simple
curve graph generates a new curve C′ which preserves the details of
C but follows the user’s coarse-scale modification. Essentially, this
is a trivial version of local transform “propagation” for deforming
a mesh, but for the curve case it can be defined independently per
point and need not be propagated.

This algorithm can be posed as a curve analogy [Hertzmann et al.
2002]: given a pair of source curves, Cs and C′

s, and a target curve
C, generate a new curve C′ such that the relationship between C
and C′ is analogous to the relationship between Cs and C′

s. While
[Hertzmann et al. 2002] transforms the vertices directly, we trans-
form their differential coordinates, which distributes errors more
uniformly across the whole curve.

Initially, Cb has two knots at the curve endpoints. The user can add
knots to perform editing at a more detailed level. Our system sup-
ports two editing modes: one manipulates a coarse-scale fit to the
original curve, Cb, and the other sketches an entirely new curve. In
the latter case, correspondence between the sketched curve and the
control curve is achieved by arclength by default. The user can also
specify a series of corresponding points between the two curves.

(b) Poisson mesh editing (c) VGL(a) Original mesh

Figure 10: Large deformation comparison.

4.2 Deformation Retargeting From 2D Cartoons

Retargeting the deformation of 2D cartoons to 3D meshes is a di-
rect application of our 2D sketch-based deformation. Users specify
one or more 3D control curves on the mesh along with their projec-
tion planes and, for each curve, a series of 2D curves in the cartoon
image sequence that drive its deformation (see Figure 9). Suppose
that Ci is the projection of a 3D control curve, and its corresponding
curves in the cartoon sequence are Ci, j, j ∈ {1, ...,k}. The index i
is for different control curves, driving different parts of the model
like arms and legs. The index j is the frame index – the same con-
trol curve has a corresponding cartoon curve for each frame. Our
system automatically derives a deformation sequence mapping Ci

to successive Ci, j.

Two details require further explanation. First, it is not necessary
to generate a deformation from scratch at every frame. Users can
select just a few key frames and specify cartoon control curves just
for these rather than the entire sequence. An automatic interpo-
lation technique based on differential coordinates [Alexa 2003] is
then used to interpolate between key frames. Suppose we have two
meshes M and M′ with the same connectivity, representing the de-
formed mesh at two key frames. We begin by computing the Lapla-
cian coordinates for each vertex on the two meshes. A rotation and
scale in the local neighborhood of each vertex p is computed taking
the Laplacian coordinate from its location in M to M′ (see Sec-
tion 3.3). Denote the transformation by Tp. By interpolating each
transformation from the identity to Tp over time, we get a smoothly
varying Laplacian coordinate from M to M′. Solving equation (2)
provides a sequence of meshes from M to M′.

Second, the 2D cartoon curves only specify how the deformed curve
projects in a single plane, leaving unspecified its shape perpendicu-
lar to the plane. We therefore allow users to select other projection
planes to specify these extra degrees of freedom, if desired.

5 Experimental Results

We have experimented with large deformations on models from
scanning devices (armadillo and dinosaur) and modeling software
(dog, cat and lioness). With surface-based methods like the Pois-
son mesh [Yu et al. 2004], pinching and other artifacts happen fre-
quently as models are deformed. Our technique eliminates these
artifacts as shown in Figures 1 and 10.

Our 2D curve-based deformation system has an intuitive interface
(see the accompanying video) that makes it easy to drive 3D de-
formations from 2D cartoons. Figures 9, 11, 12 and 13 show de-
formation retargeting results from cartoon characters. We do not
aim at deforming the 3D model into precisely the same pose as the
2D cartoon’s. This is difficult because their shapes are so different

501



Figure 11: Deformation transfer from a running dog to a lioness.

arma dino cat lioness dog

# mesh vertices 15,002 10,002 7,207 5,000 10,002

# graph points 28,142 15,895 14,170 8,409 17,190

graph generation 2.679s 1.456s 1.175s 1.367s 1.348s

LU decomposition 0.524s 0.286s 0.348s 0.197s 0.118s

back substitution 0.064s 0.028s 0.030s 0.019s 0.011s

# control curves 6 5 4 5

# key frames 10 9 8 8

session time (min) ∼120 ∼90 ∼30 ∼90

Table 1: Statistics and timing.

and because cartoons are drawings that may not be reflective of the
motion of 3D geometry. Instead, our goal is to transfer the quality
of the cartoon’s motion to the 3D model. As the animations in the
accompanying video show, we successfully obtain motions that are
remarkably similar to the cartoon’s.

Table 1 shows the data statistics and timings for models presented
in this paper. The timing is measured on a 3.0 GHz Intel Pentium 4
workstation. The session time for deformation transfer varies from
about half an hour to two hours for an untrained graduate student,
and depends on the number of control curves and image key frames.

6 Conclusion and Future Work

Differential domain methods preserve surface details as a mesh is
deformed but produce objectionable pinching and intersection ar-
tifacts when the deformation is large. We solve this problem by
preserving volumetric details represented by the volumetric graph
Laplacian. Our solution avoids the intricacies of solidly meshing
complex objects. We show the value of this idea by building a
“Teddy-like” system that allows novice users to easily specify mesh
deformations, and to re-target cartoon motions to complicated 3D
models.

Automatically inferring good local transforms for point-based
rather than curve-based deformation is an area for future work. Our
current system does support a limited form of point-based defor-
mation. If only a single point moves, we set the local transform
to the identity everywhere because our method of inferring local
transforms using WIRE depends on an original and deformed curve
pair. This works well for small deformations. For large deforma-
tions, the results are often poor because details are not preserved in
the expected local coordinate frame but are sheared along the vector
between the original and deformed point.

We currently fix graph connectivity during a deformation. Adaptive
connectivity [Kobbelt et al. 2000] is necessary for very large defor-
mations and represents an area of future work. Another enhance-
ment would be to automatically track curves in cartoon sequences.
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