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Abstract
Parkinson’s disease (PD) is a complex disease influenced by both genetic and environmental factors. Despite advances in 
understanding PD genetics, subtype-specific mechanisms remain poorly characterized. This study aims to identify distinct 
genetic markers and pathways across PD subtypes, addressing this gap to enable targeted diagnostics and therapies. Genes 
associated with PD were collected from various databases and categorized into groups based on the PD type to assess the 
PD risk. Protein interaction analysis was conducted to identify functional clusters and key genes within each group. KEGG 
enrichment analysis revealed common genes and pathways among the different PD groups. This study conformed to the 
PRISMA 2020 guidelines for systematic data collection and analysis. Hub genes such as PRKN, SNCA, and LRRK2 have 
demonstrated considerable potential as biomarkers for genetic predisposition in PD, alongside the identification of additional 
complementary genes. Analysis of hub node variants highlighted specific genetic variations in these genes. We identified 
several microRNAs, including hsa-miR-335-5p, hsa-miR-19a-3p, and hsa-miR-106a-5p, as well as transcription factors that 
interact with crucial hub genes. This study refines subtype-specific mechanisms for established PD genes and identifies novel 
genetic markers and pathways associated with juvenile, young-onset, late-onset, familial, and sporadic Parkinson’s disease, 
enhancing our understanding of their molecular mechanisms and potential for targeted diagnostics and therapies. Specifi-
cally, we highlight the roles of hub genes, such as PRKN, SNCA, and LRRK2, alongside significant microRNA interactions, 
which may serve as biomarkers for early detection and personalized treatment approaches.
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Introduction

Parkinson’s disease (PD) is a genetically heterogeneous 
neurodegenerative disorder [1], can be classified into famil-
ial (fPD) and sporadic (sPD) forms, with genetic and envi-
ronmental factors contributing to its pathogenesis [2, 3]. 
Overall, 10–15% of all PD cases are accounted for by the 

genetically inherited type [4], and the remaining cases are 
sPD. Over 90 risk loci have been identified through genome-
wide association studies (GWAS) [5], with recent multi-
ancestry analyses expanding this to 78 independent loci. Key 
genes such as SNCA, LRRK2, and PRKN dominate familial 
and early-onset subtypes, while polygenic risk scores and 
gene-environment interactions increasingly define sporadic 
and late-onset disease [4]. Genetic and environmental fac-
tors can influence the onset of human diseases, including 
PD, through complex interactions that may lead to genetic 
variants and epigenetic modifications [6]. PD, which begins 
after the age of 50 years, is called late-onset PD (LOPD) 
disease. jPD is defined explicitly for cases with onset before 
age 20 [7].

Genetic analyses have identified modules linked to PD, 
such as the SNCA module, which contains genes associated 
with an increased risk of PD [8]. Additionally, network-level 
changes induced by pathological alpha-synuclein affect neu-
rotransmission and brain oscillatory dynamics, contributing 
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to non-motor deficits in PD [9]. The non‐specific lethal 
(NSL) complex, involved in chromatin modulation, regu-
lates genes and pathways genetically associated with PD, 
underscoring the complex genetic factors influencing the 
disease[10].

Understanding the distribution of genes and regulatory 
networks related to PD is crucial. Studies have shown that 
genes associated with PD are clustered with non-specific 
lethal genes in co-expression modules, highlighting the 
interconnectedness of genetic pathways in the disease [10]. 
Furthermore, the expression and distribution of purinergic 
receptors in the basal ganglia play a role in PD pathology, 
with implications for innovative treatment strategies [11].

The discovery of genetic markers associated with Par-
kinson’s disease onset types is crucial. It can help us better 
understand the disease and develop more targeted and effec-
tive treatments. This study aims to identify these potential 
markers and bring us one step closer to a cure.

Methods

The workflow in Fig. 1 shows how hub genes and variant 
association were discovered for PD groups, detailing the 
systematic approach that includes data collection, bioinfor-
matics analysis, and statistical validation, ultimately leading 
to the identification of key genetic factors that play a critical 
role in the pathogenesis of PD.

Identification of Gene Associations and SNP Sites

We obtained all the PD gene association (PDGA) and PD 
variant association (PDVA) from the ten databases (includ-
ing UniProt [12], ClinVar [13], GWAS Catalog [14], CTD 

[15], ORPHANET [16], CLINGEN [17], GENOMICS 
ENGLAND [18], CGI [19], PSYGENET [20], LHGDN 
[21], and dbSNP [22]. Also, PubMed, Embase, Web of 
Science, and Scopus were also systematically searched 
based on boolean query (“Parkinson Disease”[MeSH]) 
AND (“Genetic Markers” OR “Polymorphism” OR “Gen-
otype” OR “Alleles” OR “Variant”) NOT (“Review” OR 
“Animal”). PRISMA 2020 guidelines were followed (Sup-
plementary Fig. S1). By April 05, 2025, about 113,500 
reports for PDGA and PDVA were retrieved. Studies 
were included if they reported statistically significant 
associations in ≥ 2 independent cohorts. Subtypes were 
categorized as jPD for diagnoses at ≤ 20 years, YOPD for 
diagnoses between 21 and 50 years, LOPD for diagno-
ses > 50 years, fPD for cases with ≥ 2 affected first-degree 
relatives or confirmed monogenic mutations, and sPD 
for cases lacking family history or known mutations [7, 
23]. Also, overlapping cases were assigned to both cat-
egories. After reviewing all the abstracts, each group’s 
genetic and variant association studies were chosen. Next, 
we narrowed our focus to studies that reported a substan-
tial correlation of gene(s) with each group from the pool 
of publications we retrieved. To minimize the occurrence 
of false-positive genes, the studies that reported insignifi-
cant or negative associations were deliberately excluded, 
despite the possibility that some genes in these studies 
may indeed be genuinely associated with PD groups. Sub-
sequently, we carefully reviewed each selected publica-
tion’s reports to ensure the conclusion aligned with its 
contents. In many studies, specific genes were discovered 
to function collaboratively and have considerable effects 
on PD groups, with each gene having a small or mild 
impact; these genes were also included in our list.

Fig. 1  Workflow for marker analyzing in Parkinson’s disease. The methodological approach used to analyze genetic and clinical data about Par-
kinson’s disease (PD)
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GO and KEGG Pathway Enrichment Analysis

The g:Profiler [24] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [25] databases were used to perform the 
functional analysis of genes and pathway enrichment using 
the g:SCS algorithm (set counts and sizes algorithm) for the 
most relevant ontology in each group. This methodological 
rigor enhances our findings’ reliability and applicability in 
clinical settings.

PPI and Module Network Analysis

The STRING database [26] was used for each group to 
analyze the protein–protein interaction (PPI) network of 
expressed genes PPI network with a confidence score > 0.9 
for significant results. The Cytoscape software [27] was 
used to visualize the PPI network. Then, the Markov cluster 
(MCL) [28] was used to analyze the PPIs’ network mod-
ules with an inflation value set to 5 and an edge cutoff set 
based on a confidence score > 0.9. The top three clusters 
were prioritized based on modularity scores and biological 
coherence, ensuring representation of major functional mod-
ules while maintaining analytical tractability for further hub 
analysis. Though additional clusters may exist, this thresh-
old captured > 80% of network connectivity across subtypes, 
consistent with prior studies [10]. Hubs were identified using 
cytoHubba [29] with maximal clique centrality and double-
checked using CentiScaPe 2.2 in each cluster [30].

Transcription Factor Network Construction 
of Modules

Indicated module transcription factors (TFs) were analyzed 
using the Top Rank integrated library in ChEA3 [31]. The 
top three putative TFs identified for each module with the 
lowest integrated scale rank were enumerated. Also, selected 
TFs were analyzed for any possible evidence of interaction. 
The scaled rank of < 0.05 was considered significant.

Nominate microRNAs

After finalizing and selecting the candidate genes, MIEN-
TURNET [32] was used for hub genes to evaluate and select 
gene-related miRNAs. The P-value < 0.05 was considered 
significant.

Results

We identified 2077 genes and 990 variants associated with 
PD, with a breakdown of subtype-specific findings: jPD (67 
genes, 37 variants), YOPD (51 genes, 32 variants), LOPD 
(247 genes, 76 variants), sPD (179 genes, 65 variants), and 

fPD (46 genes, 27 variants) which highlights the genetic 
diversity and potential for subtype-specific therapeutic strat-
egies (Supplementary Table 1). This exceeds GWAS-derived 
loci due to the inclusion of candidate gene studies and repli-
cation in ≥ 2 independent cohorts.

Function and Pathway Annotation

All genes were uploaded to the g:Profiler online tool for 
KEGG pathway enrichment analysis. Table 1 presents the 
top ten pathways at each group. The expressed genes in 
YOPD and jPD were mainly enriched in Parkinson’s disease, 
pathways of neurodegeneration—multiple diseases, and 
cocaine addiction. LOPD-associated genes were enriched 
in lipid metabolism (hsa, 05417), neuroinflammation (e.g., 
TNF/IL-17 signaling), and neurodegeneration pathways 
(Table 1). The expressed genes in sPD were mainly enriched 
in tuberculosis, inflammatory bowel disease (IBD), Parkin-
son’s disease, Chagas disease, cocaine addiction, lipid and 
atherosclerosis, pathways of neurodegeneration—multiple 
diseases, fluid shear stress, atherosclerosis, and rheumatoid 
arthritis. The expressed genes in fPD were mainly enriched 
in pathways of neurodegeneration—multiple diseases, 
growth hormone synthesis, secretion and action, ErbB sign-
aling pathway, T-cell receptor signaling pathway, Parkin-
son’s disease, TNF signaling pathway, neurotrophin signal-
ing pathway, prolactin signaling pathway, Yersinia infection, 
and colorectal cancer. Table 2 provides the gene ontology 
(GO) terms for biological process (GO:BP), molecular func-
tion (GO:MF), and cellular component (GO:CC) analyses, 
which include the expressed genes enriched in positive 
regulation.

Construction and Analysis of the PPI Network

We constructed a PPI network using the STRING database 
to explore the functional relations among all expressed 
genes. Cytoscape was utilized to assess and visualize dif-
ferent genes. The PPI network included 64 nodes and 95 
edges for jPD, 51 nodes and 89 edges for YOPD, 233 nodes 
and 746 edges for LOPD, 164 nodes and 417 edges for sPD, 
and 46 nodes and 62 edges for fPD. Furthermore, the MCL 
plugin verified the functional clusters of each network that 
met the cutoff criteria, and cytoHubba (red nodes) and Cen-
tiScaPe detected the most significant module hub gene based 
on betweenness centrality, degree, and bridging.

Hub gene analysis across PD subtypes revealed dis-
tinct molecular networks (Figs. 2 and 3). In jPD, PRKN 
(Figs. 2A and 3A) reveals regulating mitophagy and ubiq-
uitination pathways critical for neuronal survival. YOPD 
was characterized by SNCA (Figs. 2B and 3B), implicating 
α-synuclein aggregation as a key driver of early pathology. 
In contrast, fPD highlighted LRRK2 (Figs. 2C and 3C), with 
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its kinase signaling activity suggesting a role in synaptic 
and cytoskeletal dysregulation. For LOPD, three functional 
modules were identified: (1) SNCA (Figs.  2D and 3D) 
dominated neurodegeneration pathways, (2) ALB (Figs. 2D’ 
and 3D’) linked to metabolic dysregulation, and (3) IL6 
(Figs. 2D” and 3D”) underscored chronic neuroinflamma-
tion. Meanwhile, sPD exhibited a tripartite architecture: (1) 
PRKN (Figs. 2E and 3E) in mitochondrial quality control, 
(2) inflammatory mediators (IL1A, TNF, IL10, and IL1B; 
Figs. 2E’ and 3E’) reflecting immune dysregulation, and 
(3) CYP1A1 (Figs. 2E” and 3E”), a xenobiotic metabolism 
gene, pointing to environmental interactions. These findings 
emphasize subtype-specific pathobiology, from mitophagy 
deficits in juvenile and young-onset forms to inflammatory-
metabolic crosstalk in late-onset and sporadic PD.

The modules were filtered according to their groups to 
emphasize the most statistically significant genes related 

to the disease. Our analysis revealed that PINK1, SNCA, 
LRRK2, and PRKN are not only prevalent across all five dis-
ease groups but also exhibit distinct expression patterns and 
genetic variations that may contribute to subtype-specific 
pathophysiology (Fig. 4 and Supplementary Table 2).

Single Nucleotide Polymorphism (SNPs) Sites

Table 3 delineates each subtype’s variant landscape asso-
ciated with specific hub node genes. In the PRKN gene, 
most variants are missense changes, indicating a strong 
potential for functional impact on protein activity. Notable 
variants include rs1801474 (C/T, Ser/Asn) and rs1801582 
(C/G, Val/Leu, Val/Ile). The SNCA gene also exhibits a 
high prevalence of intron variants, which may play a role in 
gene regulation, alongside significant missense variants like 
rs104893875 (C/T, Glu/Lys) and rs104893877 (C/T, Ala/

Table 1  Gene classification in 
the functional modules based on 
KEGG with a false discovery 
rate of < 0.05 (top 10)

The “count” column indicates the number of associated genes for each term, while the “P-value” column 
reflects the statistical significance of the associations. The data highlight the relevance of gene-related path-
ways in the context of different groups, including jPD, YOPD, LOPD, sPD, and fPD

Term ID Term name Count p-value

jPD hsa:05012
hsa:05030
hsa:05022

Parkinson disease
Cocaine addiction
Pathways of neurodegeneration—multiple diseases

266
49
474

1.43E − 08
0.000657513
0.00096473

YOPD hsa:05012
hsa:05022
hsa:05030

Parkinson disease
Pathways of neurodegeneration—multiple diseases
Cocaine addiction

266
474
49

3.01E − 08
0.000128781
0.038243158

LOPD hsa:05417
hsa:04933
hsa:05022
hsa:05144
hsa:05142
hsa:04668
hsa:05030
hsa:05323
hsa:05145
hsa:04657

Lipid and atherosclerosis
AGE-RAGE signaling pathway in diabetic complications
Pathways of neurodegeneration—multiple diseases
Malaria
Chagas disease
TNF signaling pathway
Cocaine addiction
Rheumatoid arthritis
Toxoplasmosis
IL-17 signaling pathway

214
100
474
49
101
113
49
88
109
91

7.64E − 08
6.31E − 07
2.57E − 06
3.23E − 05
5.00E − 05
1.69E − 04
3.78E − 04
6.89E − 04
7.63E − 04
9.34E − 04

sPD hsa:05152
hsa:05321
hsa:05012
hsa:05142
hsa:05144
hsa:05030
hsa:05417
hsa:05022
hsa:05418
hsa:053s23

Tuberculosis
Inflammatory bowel disease
Parkinson disease
Chagas disease
Malaria
Cocaine addiction
Lipid and atherosclerosis
Pathways of neurodegeneration—multiple diseases
Fluid shear stress and atherosclerosis
Rheumatoid arthritis

175
62
266
101
49
49
214
474
138
88

1.15E − 07
7.38E − 07
7.58651E − 06
8.7401E − 06
2.26246E − 05
2.26246E − 05
8.89612E − 05
0.000100313
0.000208787
0.00023389

fPD hsa:05022
hsa:04935
hsa:04012
hsa:04660
hsa:05012
hsa:04668
hsa:04722
hsa:04917
hsa:05135
hsa:05210

Pathways of neurodegeneration—multiple diseases
Growth hormone synthesis, secretion and action
ErbB signaling pathway
T cell receptor signaling pathway
Parkinson disease
TNF signaling pathway
Neurotrophin signaling pathway
Prolactin signaling pathway
Yersinia infection
Colorectal cancer

474
120
84
103
266
113
118
70
136
86

1.90345E − 06
0.000227166
0.000708628
0.001917558
0.002153468
0.00299982
0.003693473
0.007091669
0.007268465
0.015792049
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Table 2  Parkinson disease’s gene ontology terms

GO Terms

Biological P-value ID Molecular P-value ID Cellular P − value GO

LOPD Response to 
chemical

Dopamine meta-
bolic process

Circadian rhythm
Inclusion body 

assembly
Viral process
Smooth muscle 

adaption
Negative regula-

tion calcium ion 
transport

Heterocycle bio-
synthetic process

Positive regulation 
of cholesterol 
efflux

Response to UV-A

4.10E − 38
1.23E − 16
1.00E − 04
3.45E − 04
8.82E − 03
1.01E − 02
1.29E − 02
1.34E − 02
1.57E − 02
2.49E − 02

0042221
0042417
0007623
0070841
0016032
0014805
0051926
0018130
0010875
0070141

Signaling receptor 
binding

Identical protein 
binding

Dopamine binding
Dopamine neu-

rotransmitter 
receptor activity

Transition metal 
ion binding

Antioxidant activ-
ity

Monoamine 
transmembrane 
transporter 
activity

Oxidoreductase 
activity

Sodium:chloride 
symporter activ-
ity

Amyloid-beta 
binding

4.33E − 16
1.32E − 12
1.50E − 06
3.27E − 05
4.10E − 04
1.68E − 03
3.04E − 03
6.36E − 03
8.17E − 03
1.92E − 02

0005102
0042802
0035240
0004952
0046914
0016209
0008504
0016491
0015378
0001540

Extracellular 
region

Cell body
Cell surface
Membrane raft
Inclusion body
Dopaminergic 

synapse
Basal part of cell
Apical part of cell
Endocytic vesicle 

lumen
Receptor complex

1.10E − 18
5.21E − 10
6.42E − 06
1.94E − 05
2.73E − 05
8.12E − 05
1.04E − 03
1.28E − 02
3.27E − 02
3.76E − 02

0005576
0044297
0009986
0045121
0016234
0098691
0045178
0045177
0071682
0043235

YOPD Dopamine trans-
port

Dopamine meta-
bolic process

Negative regula-
tion of oxidative 
stress-induced 
intrinsic apop-
totic signaling 
pathway

Synaptic vesicle 
localization

Neuron apoptotic 
process

Locomotory 
behavior

Regulation of 
mitochondrion 
organization

Regulation of 
reactive oxygen 
species meta-
bolic process

Regulation of 
secretion by cell

Nervous system 
development

1.15E − 11
7.15E − 11
7.21E − 10
1.10E − 09
2.06E − 09
3.69E − 09
3.77E − 09
7.78E − 08
7.90E − 07
2.50E − 05

0015872
0042417
1902176
0097479
0051402
0007626
0010821
2,000,377
1,903,530
0007399

Cuprous ion bind-
ing

Ubiquitin-specific 
protease binding

Protease binding
ATP-dependent 

protein folding 
chaperone

1.10E − 06
0.008
0.017
0.029

1903136
1990381
1903135
0140662

Neuron projection
Mitochondrion
Inclusion body
Uniplex complex
Cell body
Multivesicular 

body, internal 
vesicle

6.86E − 09
6.36E − 08
8.59E − 08
5.44E − 05
0.0001
0.018

0043005
0005739
0016234
1990246
0044297
0097487
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Table 2  (continued)

GO Terms

Biological P-value ID Molecular P-value ID Cellular P − value GO

jPD Cellular response 
to oxidative 
stress behavior

Regulation of 
autophagy of 
mitochondrion

Response to toxic 
substance

Neuron apoptotic 
process

Catecholamine 
biosynthetic 
process

Dopamine trans-
port

Regulation of 
autophagy of 
mitochondrion 
in response to 
mitochondrial 
depolarization

Synaptic signaling
Homeostatic 

process

2.49E − 14
1.67E − 13
3.52E − 12
6.98E − 12
7.33E − 11
5.19E − 08
4.80E − 07
1.07E − 06
1.14E − 06
2.41E − 06

0034599
0007610
1903146
0009636
0051402
0042423
0015872
1904923
0099536
0042592

Enzyme binding
Protein-folding 

chaperone bind-
ing

Molecular func-
tion activator 
activity

Copper ion bind-
ing

Catalytic activity
Ubiquitin conju-

gating enzyme 
activity

Oxygen binding
Signaling receptor 

binding
Opioid peptide 

activity
Protein-containing 

complex binding

3.58E − 12
1.89E − 07
0.0002
0.0006
0.0009
0.001
0.003
0.004
0.029
0.039

0019899
0051087
0140677
0005507
0003824
0061631
0019825
0005102
0001515
0044877

Axon
Presynapse
Cell body
Synapse
Mitochondrion
Neuronal cell 

body
Inclusion body
Vesicle
Dopaminergic 

synapse
Mitochondrial 

outer membrane

1.02E − 13
5.80E − 10
6.81E − 10
4.46E − 08
8.79E − 08
2.73E − 07
1.56E − 05
4.77E − 05
0.001
0.009

0030424
0098793
0044297
0045202
0005739
0043025
0016234
0031982
0098691
0005741

sPD Cellular catabolic 
process

Response to oxy-
gen-containing 
compound

Dopamine meta-
bolic process

Peptidyl-serine 
phosphorylation

Regulation of 
dopamine secre-
tion

Regulation of 
spontaneous 
synaptic trans-
mission

C-terminal protein 
lipidation

Regulation of 
long-term synap-
tic potentiation

Regulation of 
endothelial cell 
proliferation

Intracellular 
distribution of 
mitochondria

1.06E − 27
1.04E − 26
3.73E − 17
2.88E − 06
1.87E − 05
8.45E − 05
0.0001
0.001
0.019
0.026

0044248
1901700
0042417
0018105
0014059
0150003
0006501
1900271
0001936
0048312

Signaling receptor 
binding

Enzyme binding
Catalytic activity
Dopamine binding
Protein serine 

kinase activity
Dopamine neu-

rotransmitter 
receptor activity

Adenyl nucleotide 
binding

Hydrolase activity, 
acting on glyco-
syl bonds

Hsp90 protein 
binding

Cuprous ion bind-
ing

2.87E − 07
7.82E − 06
8.67E − 06
0.0001
0.0009
0.003
0.005
0.010
0.020
0.021

0005102
0019899
0003824
0035240
0106310
0004952
0030554
0016798
0051879
1903136

Cell body
Neuronal cell 

body
Cytoplasm
Mitochondrion
Axon
Neuron projection
Presynapse
Synapse
Inclusion body
Cell surface

5.24E − 14
1.53E − 12
3.36E − 11
3.23E − 10
3.14E − 09
1.08E − 07
3.43E − 07
4.52E − 07
0.0003
0.0258

0044297
0043025
0005737
0005739
0030424
0043005
0098793
0045202
0016234
0009986
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Thr). In the LRRK2 gene, diverse missense variants, such 
as rs34637584 (G/A, Gly/Ser), underscore the importance of 
kinase activity alterations in neuronal function. A significant 
number of variants in the PINK1 gene are nonsense vari-
ants that lead to the formation of a stop codon, resulting in 
truncated proteins, which have a severe impact on function. 
Moreover, there is a high rate of deletion variants, causing 
frameshift mutations to compromise other hubs. The IL1B 
and IL6 genes, while primarily associated with inflammatory 
responses, show upstream and intron variants that may influ-
ence gene expression and contribute to neuroinflammation, 
a known factor in PD progression. Lastly, the CYP1A1 gene 
presents missense and synonymous variants, with missense 
changes like rs1279844744 (A/G, Cys/Arg).

TF Networks’ Construction of Modules

Transcription factors regulate gene expression and func-
tion by binding to specific DNA sequences. We utilized the 
ChEA3 to predict transcription factors within the modules. 
Table 4 reveals the top three predicted transcription factors 
that met scaled rank < 0.05 for each group.

In jPD, YOPD, and fPD clusters, MXI1 emerged as the 
most significant transcription factor governing the hub 

nodes, PRKN and SNCA. In LOPD, ESR2 plays a regula-
tory role for both SNCA and IL6, while ALB is regulated 
by the transcription factors FOXA3 and CREB3L3. In sPD, 
ESR2 regulates a broader set of genes, including PRKN, 
IL10, IL1A, TNF, and CYP1A1. Additionally, NFE2L2 
regulates TNF, IL1A, ILB, and CYP1A1, whereas BATF3 
specifically regulates TNF and IL10 (Table 4).

The ChEA3 application also identifies putative transcrip-
tion factors based on their co-expression similarity. In the 
YOPD TF network, MXI1 represents a significant co-expres-
sion and co-occurrence effect on FOXO4 (Fig. 5A). In the 
LOPD TF network, FOXA3 and CREB3L3 reveal mutual 
co-expression and co-occurrence but not in a significant 
manner (Fig. 5B). In the fPD TF network presented, the TF 
co-expression network SOX2 represents the co-occurrence 
effect on SOX6, while both represent the co-expression 
effect on MXI1 (Fig. 5C).

Nominate microRNAs

After identifying ten proteins LRRK2, SNCA, PRKN, IL6, 
IL1A, IL1B, CYP1A1, TNF, IL10, and ALB, we isolated and 
selected the most relevant microRNAs (Fig. 6). Accordingly, 
hsa-miR-335-5p, hsa-miR-19a-3p, and hsa-miR-106a-5p 

Table 2  (continued)

GO Terms

Biological P-value ID Molecular P-value ID Cellular P − value GO

fPD Positive regula-
tion of cellular 
component 
organization

Chemical synaptic 
transmission

Regulation of 
intracellular 
transport

Locomotory 
behavior

Negative regula-
tion of protein 
phosphorylation

Regulation of 
reactive oxygen 
species meta-
bolic process

Dopamine biosyn-
thetic process

Positive regula-
tion of protein 
ubiquitination

Locomotion
Homeostatic 

process

1.08E − 08
5.05E − 08
2.01E − 07
1.20E − 06
3.28E − 05
0.0011
0.0036
0.0123
0.0154
0.0174

0051130
0007268
0032386
0007626
0001933
2000377
0042416
0031398
0040011
0042592

Cuprous ion bind-
ing

Protein binding
MAP kinase 

activity
Protein serine 

kinase activity
DNA-binding 

transcription fac-
tor binding

0.0002
0.0004
0.0028
0.0068
0.0459

1903136
0005515
0004707
0106310
0140297

Synapse
Mitochondrion
Mitochondrion-

derived vesicle
Inclusion body
Cell body
Axon
Vesicle
Mitochondrial 

intermembrane 
space

Multivesicular 
body, internal 
vesicle

4.63E − 10
4.81E − 07
1.845E − 06
2.113E − 06
3.733E − 06
1.30E − 05
0.0007
0.0055
0.0138

0045202
0005739
0099073
0016234
0044297
0030424
0031982
0005758
0097487

The table presents a comprehensive overview of the GO terms into biological processes, molecular functions, and cellular components. The 
P-values provided reflect the strength of the association, with lower values indicating a more significant relationship
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were more significant than other miRNAs. As revealed in 
Fig. 6, hsa-miR-335-5p interacted with four targets PRKN, 
IL6, IL1A, and LRRK2, hsa-miR-19a-3p interacted with 
TNF, PRKN, and IL10, and hsa-miR-106a-5p interacted 
with IL10, IL1B, and IL6. A detailed table of these micro-
RNAs and transcription factors with their target genes is 
included in Supplementary Table 3 to emphasize their poten-
tial regulatory roles in PD.

Discussion

This study provides insights into the genetic architecture of 
PD, revealing distinct genetic markers and pathways asso-
ciated with different PD subtypes. Recent multi-ancestry 
GWAS identified 78 independent PD risk loci, reinforcing 
the role of genes like SNCA and LRRK2 [33]. Our findings 
highlight the potential role of cytokines and other genes that 

may have been previously underappreciated in PD as the 
second most common neurodegenerative disorder [34, 35]. 
Although progress has been made in identifying genetic fac-
tors associated with PD risk, most of the common variants 
driving the disease have yet to be identified, and even for 
well-characterized loci, the identity of the functional effector 
variant remains unknown.

jPD/YOPD modules implicate mitochondrial dysfunc-
tion (e.g., PRKN/PINK1-driven mitophagy), aligns with 
mechanisms in Huntington’s disease and ALS, whereas 
LOPD’s lipid-inflammatory axis (e.g., AGE-RAGE) reflects 
aging-related metabolic decline, suggesting distinct thera-
peutic targets for jPD and YOPD versus LOPD. However, 
the LOPD and fPD types are significantly related to neu-
rodegenerative pathways, while the sPD is related to anti- 
and inflammatory pathways (Table 1). Various studies have 
implicated lipids in different aspects of PD pathology, 
from cytotoxic interactions with disease-causing genes to 

Fig. 2  MCL modules and can-
didate hub genes are visualized 
using the Cytoscape cytoHubba 
plugin. This figure illustrates the 
results of the MCL clustering 
analysis applied to PPI networks 
across different subtypes of 
PD. Each sub-panel represents 
distinct clusters identified for 
various onset categories, high-
lighting candidate hub proteins 
based on their clique centrality. 
A Juvenile, B young-onset, C 
familial, D late-onset module 
top first, D’ module top second, 
D” module top third, E sporadic 
module top first, E’ module 
top second, and E” module top 
third. The edges reflect interac-
tions between proteins
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alterations in lipid pathways [36, 37]. Research has shown 
disturbances in sphingolipid metabolism, highlighting the 
potential involvement of lipids in PD [38–40]. LOPD has 
been linked to various genetic factors, such as mutations in 
TWNK [41], PLA2G6 [42], and GBA [43]. The interaction 
between advanced glycation end products (AGEs) and the 
receptor for AGEs (RAGE) triggers the activation of various 
downstream pathways such as NF-κB, ERK1/2, p38, JNK, 
and PI3K, leading to neuronal cell death, neurodegeneration, 
and neuroinflammation [44].

In neurodegenerative diseases (Table 1), the Nrf2-ARE 
pathway, indicative of oxidative stress, has been associated 
with neuronal cell death, highlighting its role in the patho-
genesis of chronic neurodegenerative diseases [23]. The 
distinction between YOPD and LOPD Parkinson’s is sup-
ported by genetic and clinical differences, with genetic fac-
tors playing a more significant role in YOPD and jPD cases. 
The link between tuberculosis, IBD, and sPD may stem 
from the immune response triggered by tuberculosis infec-
tion or the inflammatory response to IBD and contribute to 

developing neurodegenerative diseases like PD [45, 46]. The 
TNF/IL17 neuroinflammatory signaling in LOPD overlaps 
with mechanisms in multiple sclerosis, while sPD’s immune 
dysregulation (e.g., IL10/TNF) parallels Crohn’s disease; the 
LOPD’s lipid metabolism links mirror Alzheimer’s disease 
(e.g., APOE), implicating shared inflammatory-metabolic 
axes in neurodegeneration. Familial PD’s neurodegeneration 
pathways (e.g., ErbB signaling) are conserved in ALS and 
glioblastoma, highlighting broader regulatory disruptions. 
The role of the remaining enriched pathways in PD types 
still requires further exploration.

Further, we constructed the PPI network using all genes 
for functional interactions in five types. The three most sig-
nificant functional modules were filtered (Fig. 2). We found 
that the hub gene for jPD was PRKN (Figs. 2A and 3A), 
which encodes the Parkin protein [47]. Biallelic pathogenic 
variants in PRKN are frequently found in cases of jPD. 
Variants in PRKN (Table 3), known to play a critical role 
in mitochondrial function and cellular stress response, are 
directly linked to jPD and YOPD forms of PD, suggesting 

Fig. 3  Network analysis of the most crucial hub genes. This figure 
illustrates the network analysis of critical hub genes employing the 
Centiscape plug-in, emphasizing bridging, degree, and betweenness 
centrality across various PD subtypes, highlighting their roles in con-
necting the regulatory network. A The top hub gene within the jPD 

module, B YOPD module, C fPD module, D LOPD module top first, 
D’ LOPD module top second, D” LOPD module top third, E sPD 
module top first, E’ sPD module top second, and E” sPD module top 
third
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that alterations in amino acid sequences may disrupt normal 
protein function, contributing to disease pathology. The fre-
quency of these missense variants highlights their relevance 
in the genetic predisposition to PD [48].

The SNCA gene was identified as a hub gene in YOPD, 
as seen in Figs. 2B and 3B. Mutations and copy number 
variations in the SNCA gene have been identified as causes 
of YOPD and fPD [49, 50]. Additionally, SNCA triplica-
tions have been associated with aggressive and young-onset 
Parkinsonism [49]. The emphasis on SNCA indicates that 
pathophysiological mechanisms may differ in younger 
patients compared to those with later-onset forms of the 
disease. The gene dosage of SNCA has been linked to the 
severity of clinical trajectories in PD, with triplications lead-
ing to young onset, rapid disease progression, and prominent 
dementia [51]. Furthermore, SNCA has been consistently 
highlighted as a risk-associated region for PD in genome-
wide association studies [52]. Variants within SNCA high-
light that the combination of intron and missense variants 
suggests a multifaceted approach to understanding the gene’s 
contribution to disease mechanisms.

LRRK2 (Figs. 2C and 3C) in fPD performs the role of 
a hub gene, reinforcing its established role in autosomal 
dominant forms of the disease. LRRK2 G2019S [53] and 
other mutations are a common cause of fPD and are associ-
ated with an increased risk for sPD [54, 55]. This mutation 
has been shown to trigger neurotoxic protein aggregation 
and is associated with various pathological features [53]. 

Additionally, LRRK2 mutations have been linked to altera-
tions in endolysosomal trafficking, compromising the sub-
cellular distribution of lysosomes [56, 57], which can also 
impact microglial actin dynamics and suppress lysosome 
degradative activity in macrophages and microglia [58]. The 
fPD cases driven by LRRK2 mutations are prime candidates 
for emerging kinase inhibitors (e.g., DNL201) [59].

The identified hub genes in the LOPD modules were 
SNCA in the first module (Figs. 2D and 3D), ALB in the 
second (Figs. 2D’ and 3D’), and IL6 in the third (Figs. 2D” 
and 3D”). Studies revealed that the gene dosage effect of 
SNCA on disease progression underscores its importance 
in PD [60]. SNCA duplications are associated with a more 
typical LOPD phenotype [51]. Moreover, the relationship 
between specific SNCA gene polymorphisms and the risk 
of late-onset idiopathic PD development underscores the 
genetic complexity of the disease [61]. In addition to SNCA, 
the IL6 gene has also been implicated in PD. Genetic vari-
ations in IL6 have been suggested to influence the onset 
and progression of neuroinflammatory disorders, including 
PD [62]. Studies have emphasized the significance of genes 
such as PRKN/PINK1 mutations in Parkinsonism, highlight-
ing IL6 as a potential progression marker in PD [63]. There 
is limited direct evidence linking ALB with PD; however, 
a recent study reveals that the mortality of PD patients is 
related to a higher level of C-reactive protein–albumin ratio 
[64]. SNCA-centric YOPD/LOPD cohorts might respond to 
therapies reducing α-synuclein aggregation, such as mono-
clonal antibodies in clinical trials (e.g., prasinezumab) [65].

In sPD the first module includes the PRKN (Figs. 2E 
and 3E), again establishing its central role across vari-
ous forms of PD. The second module includes the IL1A, 
IL1B, IL10, and TNF (Figs. 2E’ and 3E’), implying that 
anti- and inflammatory cytokines significantly contribute 
to the sporadic form of the disease, highlighting the inter-
action between genetic variants and environmental fac-
tors. The third module includes the CYP1A1 (Figs. 2E” 
and 3E”) as hub genes indicate the potential influence 
of environmental toxins and metabolic processes on the 
risk for developing sporadic PD, suggesting a pathway 
through which exposure may modify disease outcomes. 
Studies have shown that biallelic variants in PRKN have 
been identified in a notable percentage of sPD cases, high-
lighting the importance of this gene in the pathogenesis of 
the disease [66]. While PRKN mutations are a common 
cause of PD, heterozygous carriers of PRKN mutations 
do not necessarily have an increased risk of developing 
PD [67]. Therefore, genetic and environmental factors 
may influence the impact of PRKN mutations on sPD 
risk, including IL1A, IL1B, IL10, and TNF [68], which 
received comparable scores for the hub role in the second 
module (Fig. 3E’) in our study. Studies have revealed ele-
vated levels of proinflammatory cytokines, like TNF-α and 

Fig. 4  Venn diagram. The diagram illustrates the genetic factors asso-
ciated with different subtypes of PD, including jPD, YOPD, sPD, and 
LOPD. Each colored region corresponds to a specific PD subtype, 
with overlaps indicating shared genetic risk factors
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Table 3  Hub nodes SNPs association in Parkinson’s disease

Gene Variant Consequence Alleles Codon Referenced PMIDs

PRKN rs1801474 Missense variant C/T Ser/Asn 31512170, 19909784, 
12584415, 10511432, 
12165399

rs1801582 Missense variant C/G, T Val/Leu, Val/Ile 31512170, 14639672, 
22361577

rs1438259227 Missense variant T/A Asp/Val 24313877, 18704525
rs1801334 Missense variant C/T Asp/Asn 12165399, 19909784
rs34424986 Missense variant G/A, T Arg/Trp, Arg/Arg 16019250, 29353703
rs1258359845 Synonymous variant T/C Lys/Lys 12165399
rs1330260959 Missense variant A/C, T Ile/Met, Ile/Ile 25029497
rs147757966 Missense variant C/A, G, T Arg/Leu, Arg/Pro, Arg/Gln 26631732
rs182893847 Missense variant T/C, G Met/Val, Met/Leu 29223129
rs199657839 Missense variant G/A Arg/Cys 16793319
rs368134308 Missense variant C/A, G, T Arg/Leu, Arg/Pro, Arg/His 16793319
rs377591051 Missense variant C/T Glu/Lys 31178336
rs56092260 Missense variant G/A Arg/Trp 10965160
rs571092914 Missense variant C/A, T Ala/Ser, Ala/Thr 25865804
rs62637702 3 prime UTR variant T/C – 23275044
rs72480422 Missense variant C/A, T Asp/Tyr, Asp/Asn 18514563
rs754604402 Missense variant C/T Ser/Asn 30404819
rs766948045 Missense variant G/A His/Tyr 29353703
rs778798543 Missense variant T/C Tyr/Cys 16793319
rs9347683 5 prime UTR variant A/C, G, T – 21176923, 18387843

IL6 rs1800795 Intron variant C/G – 22155094
IL1B rs1143623 Upstream gene variant C/G – 30813952

rs16944 Upstream gene variant A/G – 27640071
CYP1A1 rs1279844744 Missense variant A/G Cys/Arg 25648260

rs1368310331 Synonymous variant T/C Val/Val 25648260
rs777119337 Missense variant C/T Arg/Lys 25648260

SNCA rs356219 Intron variant G/A – 31244647, 31234232, 
31325583, 31041581

rs356220 Intron variant T/A, C, G – 31863812
rs356182 Intron variant G/A, C – 28892059, 28078311, 

26738859, 30598082
rs181489 Intron variant T/A, C – 22438815, 21738487, 

25656566
rs356221 Intron variant A/T – 21738487, 23182315, 

22438815
rs168552 Intron variant C/T, A, G – 23071545
rs356169 Intron variant G/T – 1977,175
rs356181 Intron variant G/A, C – 36092799, 33804213, 

30618224, 30336481
rs2736990 Intron variant G/A, T – 30410434, 28844730, 

24511991, 24005725, 
25,129,240

rs356203 Intron variant C/T – 30957308, 21738487, 
22438815
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Table 3  (continued)

Gene Variant Consequence Alleles Codon Referenced PMIDs

rs356165 3 prime UTR variant G/A – 24418406, 25370538, 
25623333

rs3822086 Intron variant C/T – 26203864, 26208350, 
31325583

rs7684318 Intron variant T/C – 22425546, 20513365, 
21738487

rs2737029 Intron variant T/C – 30410434, 21738487, 
22438815

rs894278 Intron variant T/G – 22438815, 23853107, 
30778284

rs356168 Intron variant G/A – 28979294, 21738487, 
20711177

rs356204 Intron variant T/C – 18606870, 22438815
rs3775439 Intron variant G/A – 21738487, 22912757, 

22438815
rs3857059 Intron variant A/G, T – 21738487, 22438815, 

27332068
rs10516845 Intron variant A/G, T – 21738487
rs2197120 Intron variant A/G – 21738487, 22438815
rs2298728 Intron variant G/A, T – 21738487
rs356188 Intron variant T/C – 22438815
rs356200 Intron variant T/C – 21738487
rs3775423 Intron variant C/T – 21738487
rs3796661 Intron variant C/T – 22438815
rs3857053 3 prime UTR variant C/T – 21738487
rs8180209 Intron variant A/G – 28011712
rs104893875 Missense variant C/T Glu/Lys 31136022, 30989398, 

31405930, 31242217, 
31048377, 31111370, 
31178336

rs104893877 Missense variant C/T Ala/Thr 31417337, 31092553, 
31709672, 31552910, 
31816026

rs201106962 Missense variant A/C His/Gln 28373279 29398121, 
30777422

rs431905511 Missense variant C/T Gly/Asp 27613114, 30777422, 
31643109

rs542171324 Missense variant G/A, C Ala/Val, Ala/Gly 29771508, 28666710
rs10014396 Intron variant T/C – 22912757
rs17016074 3 prime UTR variant G/A – 19540308
rs356186 Intron variant A/G – 25656566
rs3775442 Intron variant C/T – 21812969
rs3775444 Intron variant C/T – 26208350
rs777296100 3 prime UTR variant -/TAA, TAAAA – 28431219
rs11931074 Intron variant G/A, C, T – 30120622, 30424941, 

31243602, 31758346
rs2572323 Intron variant A/G – 21738487
rs356174 Intron variant G/T – 21738487
rs356180 Intron variant A/G – 21738487
rs1372520 Intron variant T/C – 21738487
rs104893878 Missense variant C/G Ala/Pro 29191831, 29718367, 

29503608, 29524599, 
31426448
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Table 3  (continued)

Gene Variant Consequence Alleles Codon Referenced PMIDs

rs1330229174 Missense variant T/C Lys/Glu 28911198, 31048377
rs2301135 5 prime UTR variant G/C – 23182315
rs2619363 Intron variant G/C, T – 17872362

rs2583988 Non-coding transcript exon 
variant

C/A, T – 22438815, 17872362, 
19890971

rs1372519 5 prime UTR variant A/G – 21738487
rs2301134 Intron variant A/G – 23182315
rs2619364 Non-coding transcript exon 

variant
A/C, G – 17872362

rs3756063 Intron variant G/C – 27423554
LRRK2 rs66737902 3 prime UTR variant T/C – 24758914

rs34637584 Missense variant G/A Gly/Ser 31813996, 31292011, 
31373835, 31605779

rs1491942 Intron variant C/G – 22438815, 22451204, 
22438815, 24842889

rs28903073 Intron variant G/A – 27182965, 21738487
rs33939927 Missense variant C/A, G, T Arg/Ser, Arg/Gly, Arg/Cys 29177506, 30592623, 

31495079
rs33949390 Missense variant G/A, C, T Arg/His, Arg/Pro, Arg, Leu 31487119, 31041581, 

29567424
rs7133914 Missense variant G/A, T Arg/His, Arg/Leu 31487119, 29593234, 

29241968
rs34995376 Missense variant G/A Arg/His 27423549, 24591621, 

23726462
rs34410987 Missense variant C/T Pro/Leu 22575234, 21406209
rs7308720 Missense variant C/A, G Asn/Lys, Asn/Lys 31487119, 29593234, 

29241968
rs11564148 Missense variant T/A Ser/Thr 28395805, 27734136, 

26346174
rs17466213 Missense variant A/G Ile/Val 31029016, 29480226, 

21796139
rs34594498 Missense variant C/T Ala/Val 22575234, 22807999, 

26234753
rs35870237 Missense variant T/C Ile/Thr 24695735, 17395370, 

16939701
rs74163686 Missense variant A/C Asn/His 30592623, 29519959, 

22154298
rs35173587 Missense variant G/A, T Arg/Lys, Arg/Met 19006185, 17078063, 

20177695
rs35507033 Missense variant G/A, C Arg/Gln, Arg/Pro 17149721, 25174650, 

17216639
rs35801418 Missense variant A/C, G Tyr/Ser, Tyr/Cys 20,301,387, 18,591,067, 

15,541,309, 
15,541,308, 
16,003,110, 
21,885,347

rs11176013 Synonymous variant A/G Lys/Lys 23115130, 27734136
rs34015634 Missense variant T/C Ile/Thr 27628070, 29127874
rs35658131 Missense variant A/G Tyr/Cys 21885347, 22166457
rs10878307 Missense variant A/G Ile/Val 31790336
rs111341148 Missense variant G/A Arg/Gln 19343804
rs111501952 Missense variant G/A, C Val/Ile, Val/Leu 23124679
rs112998035 Synonymous variant C/T Arg/Arg 18353371
rs200660418 Missense variant C/A, G, T Pro/Thr, Pro/Ala, Pro/Ser 22023810
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Table 3  (continued)

Gene Variant Consequence Alleles Codon Referenced PMIDs

rs747338046 Missense variant G/C Gly/Ala 17078063
rs75148313 Missense variant G/A Ser/Asn 17523199
rs78365431 Missense variant G/T Gln/His 21632271

rs1491923 Intron variant A/G – 19915575
rs34778348 Missense variant G/A Gly/Arg 31487119, 31041581, 

30133089, 31824408
rs76904798 Intron variant C/T – 28892059, 26738859, 

25064009
rs2046932 Intron variant G/A – 24842889
rs11564273 Intron variant T/G – 22438815
rs117762348 Non-coding transcript exon 

variant
A/G – 23967090

rs10878226 Non-coding transcript exon 
variant

G/A, C – 23115130

PINK1 rs768091663 Missense G > C Ala/Pro 23303188‚ 23459931‚ 
15349860‚ 16009891‚ 
23063710‚ 33845304

rs1480758482 Frameshift deletion Tyr 15087508‚ 15349870‚ 
32713623

rs775479526 Frameshift deletion Tyr 24677602‚ 15349870‚ 
17960343‚ 18785233

rs2154533643 Nonsense G > A Trp/Ter 15087508‚ 15349870
rs2053233432 Splice donor G > A – 17576681‚ 9536098‚ 

20356854‚ 27574110
rs2053228483 Splice acceptor G > A – 16199547‚ 15087508‚ 

15349870
rs755000580 Frameshift deletion Cys 24677602‚ 15087508‚ 

15349870
rs1005937012 Nonsense C > T Gln/Ter 15087508‚ 15349870
rs756783990 Nonsense C > A Tyr/Ter 16482571‚ 20558144‚ 

21996382
rs1557561340 Frameshift deletion Ala 28492532‚ 15087508‚ 

15349870
rs34208370 Nonsense C > T Arg/Ter 15349870‚ 17960343‚ 

18785233‚ 20547144‚ 
29255601, 25741868

rs756677845 Frameshift deletion Arg 24033266
rs45539432 Nonsense C > T Gln/Ter 16769864‚ 18685134‚ 

28502045‚ 15087508‚ 
15349870

rs74315360 Missense C > A Ala/Asp 16966503
rs74315359 Missense C > T Thr/Met 18541801‚ 18785233‚ 

26274610‚ 22238344‚ 
23303188‚ 23459931‚ 
29255601

rs750664040 In-frame insertion CAA CAA , CAA CAA CAA Gln/duplicate 15970950
rs730880302 Frameshift duplicate Asp 15349871
rs28940285 Missense T > C Leu/Pro 15349870‚ 17055324‚ 

22956510‚ 15824318‚ 
17579517‚ 18359116‚ 
23303188

rs74315357 Nonsense C > T Arg/Ter 15349870
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Table 4  Transcription factor 
analysis of PD modules (scaled 
rank < 0.05)

The analysis identifies MXI1 in jPD, YOPD, fPD, and ESR2 in LOPD and sPD as the most significant TFs 
since more hub genes are covered

Modules TFs Integrated scaled rank Overlapping genes

jPD MXI1
FIZ1
SOX10

6.14 ×  10−04

6.22 ×  10−04

7.12 ×  10−04

PINK1, LRRK2, MAPT, FBXO7, SNCA
ATP13A2, MAPT, UBE2L3
GPR37, MAPT, SNCA

YOPD MXI1
SNAPC5
FOXO4

6.14 ×  10−04

6.22 ×  10−04

7.12 ×  10−04

PINK1, LRRK2, FBXO7, SNCA
PRKN, PINK1, PARK7
PINK1, APOE, SNCA, NFE2L2

LOPD FOXA3
CREB3L3
ESR2

6.14 ×  10−04

6.22 ×  10−04

7.12 ×  10−04

AHSG, PON1, ALB, APOA1, APOB
CRP, GCH1, AHSG, PON1, ALB, APOA1, APOB, LPA
PRKN, IL10, IL6, MAPT, TNF, SNCA

sPD NFE2L2
BATF3
ESR2

6.14 ×  10−04

6.22 ×  10−04

7.12 ×  10−04

IL1A, UCHL1, IL1B, CYP1B1, AHR, TNF
IL10, CCL2, TNF
PRKN, IL10, IL1A, UCHL1, IL1B, CYP1A1, CCL2, 

CYP1B1, AHR, TNF, SNCA
fPD MXI1

SOX6
SOX2

6.14 ×  10−04

6.22 ×  10−04

7.12 ×  10−04

PINK1, LRRK2, SNCA
PRKN, AIMP2, PINK1
UCHL1, APOE, SNCA

Fig. 5  TFs co-expression and co-occurrence scatter plot. This plot 
presents the critical transcription factors and their effects on one 
another within the context of Parkinson’s disease. A Depiction of a 
network of MXI1 on FOXO4, highlighting direct interactions and 
the strength of their co-occurrence and expression through vary-
ing line thickness in YOPD. B The relationships among FOXA3 and 

CREB3L3, showcasing how these transcription factors influence 
each other in LOPD. C The interaction network of MIX1, SOX2, and 
SOX6 is presented, emphasizing co-occurrence and co-expression, 
with dual labeling on the connecting line to reflect the complexity of 
their interactions fPD

Gene Variant Consequence Alleles Codon Referenced PMIDs

rs74315356 Nonsense G > A Trp/Ter 15087508, 16207731, 
18524835

rs28940284 Missense C > A His/Gln 15349870
rs74315355 Missense G > A Gly/Asp 18003639, 16207731, 

15087508

Table 3  (continued)

IL-1β, affecting the expression of P450s in patients with 
PD. P450s are involved in neurotransmitter, neurotoxic 
metabolite processing, neuroprotective hormone biosyn-
thesis and catabolism, contributing to neurodegenerative 
disease progression [69]. Specific polymorphisms in genes 
encoding CYP1A1 increase PD risk [69]. The interplay 

between genetic predisposition and environmental factors 
in sPD highlights the need for further research into how 
lifestyle and exposure may influence disease onset and pro-
gression. For example, CYP1A1’s role in sPD aligns with 
epidemiological links between pesticide exposure and PD 
risk, warranting studies on gene-environment interactions.
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While MXI1’s role in PD has not been extensively stud-
ied, its involvement in regulating proliferation mechanisms 
and cellular response to hypoxia suggests a potential impact 
on disease pathways [70, 71]. In our study of TFs’ functional 
enrichment, MXI1 has emerged as a critical regulator in jPD, 
YOPD, and fPD, significantly influencing the hub nodes 
PRKN and SNCA, which highlights its potential role in 
modulating pathways linked to neurodegeneration (Table 4). 
In LOPD, ESR2 assumes a vital regulatory function, particu-
larly in modulating SNCA and IL6, suggesting its involve-
ment in inflammatory processes. In sPD, ESR2 expands its 
regulatory influence to a broader spectrum of genes, includ-
ing PRKN, IL10, IL1A, TNF, and CYP1A1, underscoring 
its multifaceted role in neuroprotection and inflammation. 
ESR2’s role in PD is exciting due to the neuroprotective, 
inflammation modulation, and regulatory effects of estrogen 
and the observation that estrogen levels and receptor activity 
might influence neurodegenerative processes [72, 73]. This 
result supports our prediction regarding the pivotal role of 
candidate transcription factors in the mechanisms underlying 
this study (Table 4). The co-expression and co-occurrence 

of FOXO4, SOX2, and SOX6 with MXI1 highlight a sig-
nificant interaction among these transcription factors that 
may regulate gene expression and influence cellular mecha-
nisms (Fig. 5). This interconnectedness suggests a complex 
regulatory network where FOXO4, SOX2, and SOX6 col-
laboratively impact MXI1 transcription, potentially affect-
ing various biological processes such as cell differentiation, 
stress response, and neurodegeneration [74–76].

As shown in Fig. 6, hsa-miR-335-5p has been associ-
ated with regulating hub genes and inflammatory responses. 
It can be modulated by shear stress and NF-κB signaling 
factors, highlighting the intricate regulatory mechanisms 
involved [77–79]. Additionally, studies have suggested a 
link between hsa-miR-30e-5p and PD, suggesting a broader 
role of miRNAs, including hsa-miR-335-5p, in neurodegen-
erative conditions [80]. Recent research has highlighted the 
downregulation of hsa-miR-144-3p in YOPD, suggesting a 
potential role for microRNAs in the disease’s progression 
[81]. Additionally, another research highlighted that hsa-
miR-133b and hsa-miR-1-3p were downregulated in post-
menopausal osteoporosis, indicating a connection between 

Fig. 6  The communication 
network between hub genes and 
miRNAs. This figure illustrates 
the communication network 
between selected hub genes 
and their associated miRNAs, 
mapped using the MIEN-
TURNET tool. The yellow 
nodes represent the selected 
hub genes, highlighting their 
significance within the network. 
The blue elliptical nodes denote 
the related miRNAs interacting 
with the hub genes, indicating 
potential regulatory relation-
ships. Notably, key miRNAs, 
such as hsa-miR-335-5p, 
hsa-miR-19a-3p, and hsa-miR-
106a-5p, are highlighted in red 
due to their greater significance 
in regulating hub gene interac-
tions
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miRNA dysregulation and bone health, which could be rel-
evant in PD where bone health issues are prevalent [82]. 
Research on miRNAs like hsa-miR-106a-5p has shown their 
potential role in various diseases, which has been implicated 
in regulating inflammatory responses [83] and promoting 
angiogenesis [84]. The miR-335-5p (targeting PRKN/IL6) 
could serve as a plasma biomarker for early PD detection, 
while repurposing TNF-α inhibitors (e.g., etanercept) IL-6 
receptor antagonists may benefit sPD patients with elevated 
neuroinflammation [85].

There are a few limitations to consider in this study; first, 
clinical overlap between subtypes (e.g., YOPD vs. jPD or 
fPD vs. LOPD) may confound genetic associations, as age-
at-onset thresholds are not universally standardized, poten-
tially introducing heterogeneity. Second, the exclusion of 
studies reporting non-significant or negative associations 
risks publication bias, skewing results toward well-estab-
lished loci and overlooking genes (e.g., PRKN, SNCA) with 
rare or dependent variants. While this approach enhances 
focus on replicated findings, future meta-analyses integrat-
ing negative results are needed to refine subtype-specific 
genetic architectures. Third, reliance on common variants 
overlooks rare alleles and structural variations (e.g., PRKN 
exon rearrangements), which are critical in YOPD or fPD 
cases. Finally, while miRNA-TF networks (e.g., miR-335-5p 
regulation of PRKN/IL6 and ESR2) were computationally 
predicted, functional validation through in vitro or in vivo 
models is pending, which necessitates future experimental 
studies to confirm these interactions.

This study’s findings on the distinct genetic markers and 
pathways associated with each Parkinson’s disease subtype 
provide a foundation for developing targeted diagnostic tools 
and therapeutic strategies, highlighting the importance of 
personalized medicine in managing this complex disor-
der. Hub genes such as LRRK2, predominantly associated 
with fPD, may serve as definitive biomarkers, indicating a 
potential genetic predisposition in younger patients. The 
SNCA gene exhibits critical involvement in both YOPD 
and LOPD; specific mutations within this gene can suggest 
a diagnosis of YOPD, while its association with inflamma-
tory markers like IL6 is informative for LOPD presenta-
tions. PRKN is particularly relevant for cases of jPD; prior-
itizing its sequencing in early-onset cases could streamline 
genetic counseling, enabling families to anticipate disease 
progression and participate in surveillance programs for 
pre-symptomatic interventions. In contrast, inflammatory 
and anti-inflammatory cytokines such as IL1A, TNF, IL10, 
and IL1B, along with CYP1A1, are more commonly impli-
cated in sPD. These hub node genes collectively contribute 
to developing a comprehensive diagnostic toolkit, enabling 
precise identification of PD subtypes, which may ultimately 
enhance patient outcomes and deepen our understanding 

of the disease’s etiology. Plasma miR-335-5p, regulating 
PRKN/IL6, emerges as a non-invasive biomarker candidate 
for early PD detection, warranting validation in longitudi-
nal cohorts. Future studies should focus on validating these 
genetic markers in larger, diverse cohorts and exploring their 
functional implications in PD pathology. Additionally, inves-
tigating the role of identified microRNAs in disease progres-
sion could provide new avenues for therapeutic intervention.
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