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Background The serotonin transporter gene (SLC6A4)

and its promoter (5-HTTLPR) polymorphism have been

the focus of a large number of association studies of

behavioral traits and psychiatric disorders. However,

large-scale genotyping of the polymorphism has been

very difficult. We report the development and validation

of a 5-HTTLPR genotype prediction model.

Methods The single nucleotide polymorphisms (SNPs)

from the 2000 kb region surrounding 5-HTTLPR were

used to construct a prediction model through a newly

developed machine learning method, multicategory

vertex discriminant analysis with 2147 individuals from

the Northern Finnish Birth Cohort genotyped with the

Illumina 370K SNP array and manually genotyped for

5-HTTLPR polymorphism. The prediction model was

applied to SNP genotypes in a Dutch/German

schizophrenia case–control sample of 3318 individuals

to test the association of the polymorphism with

schizophrenia.

Result The prediction model of eight SNPs achieved a

92.4% accuracy rate and a 0.98±0.01 area under the

receiving operating characteristic. Evidence for an

association of the polymorphism with schizophrenia was

observed (P = 0.05, odds ratio = 1.105).

Conclusion This prediction model provides an

effective substitute of manually genotyped 5-HTTLPR

alleles, providing a new approach for large scale

association studies of this polymorphism. Psychiatr Genet

22:182–188 �c 2012 Wolters Kluwer Health | Lippincott

Williams & Wilkins.
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Introduction

The serotonin transporter (5-HTT or SLC6A4) is probably

the most frequently investigated gene in association

studies of psychiatric disorders (Caspi et al., 2010). Its

gene product mediates the reuptake of monoamine

serotonin (5-HT), a key neurotransmitter in the brain.

Many effective antidepressant drugs selectively inhibit

5-HTT function (Pacheco et al., 2009). Under certain

physiologic conditions, the expression of 5-HTT is

modulated by genetic variants, and of these, the most

frequently studied is a 43-base pair insertion/deletion

polymorphism in the promoter region, where 5-HTTLPR
has a long (L) and a short (S) allele. There are other

5-HTTLPR polymorphisms that are also good candidates

for association testing with psychiatric disorders. For

example, we now know there is a triallelic variation (S,

LA, LG) within this gene that is the result of an A to G

single nucleotide polymorphism (SNP) that splits the L

allele. This was identified by Hu et al., 2006, and it has

been shown to alter expression levels, and can make

association studies with traits and disorders more precise.

A number of studies have implicated 5-HTTLPR
genotypes in normal behavior traits (Lesch et al., 1996)

and psychiatric disorders (Lin and Tsai, 2004; Lopez-

Leon et al., 2008; Grabe et al., 2009). This variant is

postulated to modulate the effects of stress on the

development of psychiatric illnesses (Caspi et al., 2003).

However, a recent meta-analysis failed to establish a

genetic association of psychiatric illness (Risch et al.,
2009) with this polymorphism. Thus, similar to many

reported associations in complex disorders, the results of

5-HTTLPR studies have been inconsistent, warranting

further studies in larger samples for resolution.

Unfortunately, 5-HTTLPR genotypes are not present

on available SNP arrays. In addition, genotyping of

5-HTTLPR in large samples is only marginally feasible

for technical reasons. The polymorphism is located in a

highly repetitive and GC-rich DNA region that negatively

affects the efficiency of PCR amplification and possibly

results in the preferential amplification of the smaller

allele. That is, the relative amplification of the L and S

alleles of 5-HTTLPR has been shown to be dependent on
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the Mg + concentration, and several groups have reported

genotyping errors biased toward the S alleles (Sen et al.,
2004; Yonan et al., 2006; Wray et al., 2009).

If 5-HTTLPR could be investigated in the large study

samples, unresolved questions about its role in behavioral

traits and psychiatric disorders could be addressed. SNPs

in genome-wide arrays have been selected for their ability

to ‘tag’ haplotypes of multiple other SNPs (De Bakker

et al., 2005), and we postulated that it was possible that

SNPs surrounding 5-HTTLPR may tag this tandem repeat

polymorphism in a similar manner. Recently, Wray et al.
(2009) investigated a series of SNPs surrounding 5-
HTTLPR, and found that a 2-marker SNP haplotype

predicted 5-HTTLPR with an R2 of 0.7. Unfortunately,

an SNP that is not present in standard genome-wide

association studies (GWAS) arrays or in the comprehen-

sive HapMap dataset is central to its prediction, requiring

additional genotyping of study samples in most cases.

The current study was designed to identify a set of SNPs

present on commonly used Illumina GWAS arrays that

predict 5-HTTLPR genotypes with substantial sensitivity

and specificity and without additional genotyping. Using

a newly developed machine learning method, we were

able to reconstruct and validate 5-HTTLPR genotypes in

European Whites with a model based on eight SNPs.

Once validated, we applied the model to a schizophrenia

sample of 3318 to assess its association with 5-HTTLPR.

Materials and methods
Generating the prediction model

Samples and genotypes

Two study samples with manually generated 5-HTTLPR
genotypes based on biallelic variation (S, L) and array-

based SNP genotypes were used to develop and test a

prediction model for 5-HTTLPR. The first includes 2147

normal participants from the 1966 Northern Finnish Birth

Cohort (Sabatti et al., 2009) genotyped with the Illumina

370K Infinium BeadChip (Illumina, San Diego, California,

USA), referred to hereafter as ‘Finn’. The second includes

276 Dutch study participants, 126 normal and 150 diag-

nosed with schizophrenia, genotyped with the Illumina

HumanHap550 BeadChip (Illumina), referred to here-

after as ‘Dutch1’. The 5-HTTLPR polymorphism was

genotyped manually in both samples. The first sample

was used to generate and evaluate the prediction model

and the second was used to further validate the model.

Genotyping of Finn is described in Munafo et al. (2009);

the Dutch participants were genotyped using primers

(50–30) GGCGTTGCCGCTCTGAATGC and GAGG-

GACTGAGCTGGACAACCAC and PCR amplification

in 20 ml volumes, containing 25 ng of genomic DNA,

0.25 mmol/l of each primer, using AccuPrime GC-Rich

DNA Polymerase (Invitrogen, Grand Island, New York,

USA). The PCR program was as follows: 951C (30); 33�
[951C (3000); 65–541C (3000); 721C (10)]; and then 721C

(100), followed by 41C (N). A measure of 10 ml PCR

product was size-separated on a 2% agarose gel. Scoring

was performed by two independent raters (S.B. and E.J.).

Selection of single nucleotide polymorphism predictors

SNPs found between 24 523 266 and 26 462 684 bp on

17q11.2 were used to construct a prediction model for

5-HTTLPR (Genome build hg18). The criteria for

inclusion in the model building panel were a minor allele

frequency more than 0.05, Hardy–Weinberg equilibrium

(HWE) P > 0.05, and missing genotypes less than 0.01. A

0.8 pairwise R2 threshold was used to remove redundant

SNPs. The 77 SNPs fulfilling these criteria were available

for the prediction of the 5-HTTLPR genotypes. Stepwise

linear regression implemented under SAS 9.1 (SAS

Institute Inc., Cary, North Carolina, USA) PROC REG

was used with the significance levels of entry (SLEN-

TRY) and staying (SLSTAY) set at 1.0E-09 to substan-

tially reduce the number of SNPs, to make this model

accessible.

The prediction model

Machine learning methods, such as the support vector

machine (SVM) (Vapnik, 1995 and 1998), have recently

been successfully applied to solve classification problems

such as this one (Capriotti et al., 2006; Kong and Choo,

2007; Zhou and Wang, 2007; Lin and Hwang, 2008;

Liu et al., 2008; Zeller et al., 2008). Here, the individuals

are classified into their 5-HTTLPR genotypes. A newly

developed multicategory machine learning method of

vertex discriminant analysis (VDA) (http://www.amstat.org/
publications/jcgs/) (Lange and Wu, 2008) was used to

predict the three 5-HTTLPR genotypes S/S, S/L, and

L/L, capitalizing on the partial linkage disequilibrium

with surrounding SNPs. This analytic method was

selected because a study by its developers showed that

it performs better in multicategory prediction than a

number of other methods, and an additional strength is

that it allows for a nonlinear relationship between the

genotypes and the predictors, providing greater flexibility

in the prediction model.

The VDA approach is described here. A learning model is

constructed using a training dataset and evaluated with a

test dataset. For k category classifications (here k is 3),

VDA constructs k equidistant points in the Rk – 1 space to

assign the coordinates of the response variable (the

predicted 5-HTTLPR genotypes, L/L, L/S, and S/S) and

is denoted below by y. The learning model is searched

numerically to optimize a loss function with two terms:

Loss ðA; bÞ¼ 1

n

Xn

i¼1

k yi�AT xiþb ke þl
Xk�1

j¼1

k aj k2;

where (A, b) is a p� (k – 1) matrix of regression co-

efficient used for genotype prediction with the jth
column denoted by aj and a (k – 1) by 1 vector of

intercepts, n is the number of observations, where they
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are indexed by i, and (x, y) is a vector of p predictors

(here there are eight SNPs for x) and their response

values (the 5-HTTLPR genotypes for y). The first term

represents the distance between y and the fitted

response with a Euclidean distance that is insensitive to

E and robust to outliers. The second term represents the

ridge penalty, which penalizes irrelevant predictors with a

positive tuning parameter l. This is included to handle a

large number of predictors, although they have been

limited to eight here. The technical strength of this ap-

proach is efficient optimization, where the majorization–

minimization algorithm is used to minimize this loss

function with fixed (E, l) with iterative optimization (De

Leeuw and Heiser, 1977).

For these analyses, the prediction models were generated

using Finn. Here, we present data preparation details for

how the models were generated. Before analysis and for

each individual, their eight predictor SNPs were coded as

an 8� 1 vector of 0, 1, or 2, representing the number of

minor alleles that person has at that SNP. All predictors

were standardized on the basis of the number of minor

alleles a person has at a particular SNP in the following

way. For each individual in the sample and for a given

SNP, the number of minor alleles was recorded and the

mean and variance of those data were estimated. The

standardized value for 0 minor alleles was obtained by

subtracting the mean from 0 and dividing by the SD. For

one minor allele, 1 is used in the place of 0, and for two

minor alleles, 2 is used in the place of zero. The 8� 2

matrix of coefficients A and the 2� 1 vector of intercepts

b were estimated in the model, which is then used to

Table 1 Distributions of observed 5-HTTLPR genotypes (%) in Finn
and Dutch1

Finn (n = 2147) Dutch1 (n = 276)

S/S 359 (17) 59 (21)
S/L 1036 (48) 135 (49)
L/L 752 (35) 82 (30)
Frequency of S 0.41 0.46

Table 2 Single nucleotide polymorphisms predicting 5-HTTLPR
genotypes in order of their contributions to the stepwise
regression model in the Finn training sample (n = 1852)

Reference single
nucleotide
polymorphism ID

Position in base
pairs Genome

build hg18
Minor allele
frequency Cumulative R2

rs1487971 25 596 879 0.40 0.341
rs2129785 25 614 656 0.10 0.523
rs11651241 25 613 604 0.10 0.811
rs4794873 25772 478 0.15 0.821
rs887469 25716 700 0.08 0.830
rs1061342 26 138 589 0.10 0.837
rs4494608 25 512 917 0.15 0.844
rs7217677 24 799 793 0.17 0.850
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predict the 5-HTTLPR genotypes for each individual,

similar to what is done to predict values by standard

regression methods.

Evaluating the prediction model

The learning model was searched using 10-fold cross

validation on the training dataset. Predictions were

evaluated using an overall misclassification rate (OMR),

the number of misclassified genotypes divided by a total

number of those predicted. Accuracy was defined as 1–

OMR. A binary misclassification rate (BMR) was also

estimated for each of the three genotypes. The BMR, the

rate for genotype S/S versus others, BMRS/S, is defined as

the sum of the observations with either S/S genotypes

misclassified or non-S/S genotypes misclassified as S/S

divided by the total number of observations. BMRS/L and

BMRL/L are defined in an analogous manner. Performance

of the learning model was evaluated by the area under

the receiving operating characteristic curves (AROC)

in addition to OMR and BMR. AROC provides a 0–1

diagnostic value to discriminate one class (here, that class

is S allele carriers: S/S, S/L) from the other and reflects

the relationship of the sensitivity and specificity of pre-

diction. An AROC with a value of one indicates a perfect

discrimination between classes (Bamber, 1975).

In addition, a family-based sample of 27 trios from

HapMap CEU referred to as ‘HapMap Trios’ was used to

further evaluate prediction by assessing the number of

detectable Mendelian errors among the predicted geno-

types in the trios.

Testing association with schizophrenia

5-HTTLPR genotypes were predicted in a combined

ethnically homogeneous White schizophrenia case–control

sample from the Netherlands and Germany to test for the

association of this disorder, assuming an additive genetic

effect. This sample is composed of 3318 individuals (2030

cases and 1288 controls). The first, referred to as ‘Dutch’,

is 803 cases and 685 controls and includes Dutch1, used

in developing the prediction model. The second, referred

to as ‘German’, includes 485 cases and 1345 controls.

Both samples were genotyped with the same Illumina

HumanHap 550 K BeadChip. The Dutch and German

Schizophrenia samples have been described previously

(Stefansson et al., 2009). In Dutch, one of the SNP

predictors in the model was not completely genotyped,

and Option 23 of the Mendel software package (Depart-

ment of Human Genetics, David Geffen School of

Table 3 5-HTTLPR genotype prediction model for eight single nucleotide polymorphisms

Covariate (xi)
b value selected by number of minor alleles for that SNP Prediction modelc

Predictorsa (SNPs are indexed by i ) i xi if 0 xi if 1 xi if 0 ai1 ai2

rs7217677 1 – 0.6411 1.2467 3.1346 – 0.053427738 – 0.017944884
rs4494608 2 – 0.5930 1.3751 3.3432 0.053488163 0.010513604
rs1487971 3 – 1.1437 0.2732 1.6900 – 0.388960505 – 0.081862677
rs11651241 4 – 0.4700 1.8637 4.1974 – 0.212066944 – 0.053959400
rs2129785 5 – 0.4750 1.9214 4.3178 – 0.229855845 – 0.048378268
rs887469 6 – 0.4288 2.1924 4.8136 – 0.073285608 – 0.024940628
rs4794873 7 – 0.6036 1.3645 3.3326 0.111159158 0.034747773
rs1061342 8 – 0.4580 1.9055 4.2690 – 0.059042871 – 0.021787721

– – – – – b1 b2

– – – – – – 0.048664235 – 0.201663866

Each person will have eight ai1x terms + b1 for value 1 and eight ai2x terms + b2 for value 2.
Values 1 and 2 will be used to calculate the Euclidean distance from the vertex.
SNP, single nucleotide polymorphism.
aThe SNPs are listed by their base-pair positions in increasing order.
bxi is the standard value from the Finn training sample (n = 1852).
cCoefficients of prediction models in ATxi + b, where A is (a1, a2) and b is (b1, b2).

Table 4 Distributions of predicted 5-HTTLPR genotypes for manual
genotypes in Finn and Dutch1 samples

Predicted manual S/S S/L L/L Total

Finn
S/S 36 6 0 42
S/L 7 139 4 150
L/L 0 4 79 83

Dutch1
S/S 53 5 1 59
S/L 10 117 7 134
L/L 1 5 73 79

Table 5 Misclassification analyses for predicted 5-HTTLPR
genotypes in training and test data sets

Finn Dutch1

Training data sample size
(S/S, S/L, L/L)

1852 (314, 878, 660) –

Test data sample size
(S/S, S/L, L/L)

275 (42,150,83) 272 (59, 134,79)

OMR (%) 7.6 10.7
BMRS/S (%) 4.7 6.2
BMRS/L (%) 8.0 9.9
BMRL/L (%) 3.3 5.2
AROC (standard error)

S/S, S/L versus L/L
0.98 (0.01) 0.94 (0.02)

AROC, area under the receiving operating characteristic curves; BMR, binary
misclassification rate; OMR, overall misclassification rate.
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Medicine at UCLA, Los Angeles, California, USA) was

used to impute the missing SNP genotypes from those

that were genotyped (Ayers and Lange, 2008). The

prediction model was applied to the combined Dutch and

German to predict the S/S, S/L, and L/L genotypes. The

association of the predicted genotypes with schizophrenia

was tested using the Cochran Armitage trend analysis test

programmed in the PLINK software package (http://pngu.
mgh.harvard.edu/~purcell/plink/dataman.shtml#extract)(Purcell

et al., 2007).

Results
Table 1 presents the distributions of the observed 5-
HTTLPR genotypes and their allele frequencies in

the Finn and Dutch1 samples. HWE was not rejected

in either sample (P > 0.05), indicating that this hallmark

of genotyping error was not violated by the predicted

genotypes. Stepwise linear regression was applied to

select SNPs that were used as input for the learning

models predicting 5-HTTLPR genotypes in Finn. Table 2

presents the reference sequence number of the eight

selected SNPs, their base-pair locations, minor allele fre-

quencies, and the cumulative R2 for these eight predictors.

They explain 85% of the variance of 5-HTTLPR geno-

types. The first three SNPs in the table contribute to the

majority of the variance. Figure 1 represents the locations

of the eight SNPs relative to 5-HTTLPR with the base-

pair locations along the horizontal axis.

Table 3 presents the results of generating the prediction

model. The eight SNPs are given in the first column,

with their locations in base pairs in the second. Columns

3–5 show the values for the prediction model for each

SNP. The value chosen for the model will be based on

whether the individual has 0, 1, or 2 minor alleles at that

SNP. The coefficients of the equations are given in the

last two columns. Each individual will have two predicted

values. A Euclidean distance between those two values

and the two values at each vertex is calculated. The

vertex with the shortest distance is the predicted 5-
HTTLPR genotype. For example, if the predicted values

are 0.1040 and – 0.1807, and vertex S/S has values 0.7071

and 0.7071, then the Euclidean distance is given by:

d1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:1040�0:7071Þ2þð�0:1807�0:7071Þ2

q
¼1:0733;

The coordinates of the three vertices are S/S (0.7071,

0.7071), S/L (0.2588, – 0.9659), and L/L (– 0.9659, 0.2588).

Table 4 presents information regarding the performance

of the model in predicting 5-HTTLPR in the Finn and

Dutch1 samples. Here, in Finn, the S/S genotype is

predicted correctly 36 times and incorrectly six times,

S/L is predicted correctly 139 of 150 times, and L/L 79 of

83 times. An analogous result is seen in the independent

Dutch1 sample. Table 5 indicates that predicting the

5-HTTLPR genotypes in Finn results in a 7.6% OMR,

indicating an accuracy rate of 92.4% in the test dataset

and a 0.98 AROC to distinguish the S allele carriers. As

indicated by the BMRS/L, 8.0% of the misclassified

genotypes are heterozygous. The same pattern is observed

in Dutch1. Predicted genotypes in both samples are

consistent with HWE.

Table 6 presents the distributions of predicted 5-HTTLPR
genotypes for the Dutch and German samples taken

separately, and the HapMap CEU family-based sample.

The model has good predictive ability, as assessed by HWE

of the 5-HTTLPR genotypes (P > 0.3), and no detectable

Mendelian errors in the HapMap CEU sample, although

the number of trios is small.

In the assessment of association with schizophrenia, a

small, but significant association (P = 0.05, odds ratio =

1.105) was found in the case–control sample of 3318

individuals. This effect size is consistent with those

observed for individual SNPs in psychiatric disorders.

Discussion
The promoter polymorphism of the serotonin transporter

gene (5-HTTLPR) has been reported to be associated with

various personality traits and psychiatric disorders. For

example, numerous studies (Beevers et al., 2007; Osinsky

et al., 2008; Alexander et al., 2009; Beevers et al., 2009;

Table 6 Predicted 5-HTTLPR Genotypes in Dutch, German, and HapMap samples

Genotype

S/S S/L L/L
HWE

P-value S Frequency

Dutcha Number (%)
Controls (n = 682) 132 (19) 322 (47) 228 (33) 0.4 0.43
Schizophrenia (n = 802) 161 (20) 395 (49) 246 (31) 0.9 0.45

German sample
Controls (n = 1345) 213 (16) 670 (50) 462 (34) 0.6 0.41
Schizophrenia (n = 485) 93 (19) 231 (48) 161 (33) 0.3 0.43

HapMap CEU sample
Founders (n = 54) 14 (26) 23 (43) 17 (31) 0.4 0.47

HWE, Hardy–Weinberg Equilibrium.
aFour of 1488 missing predictors.
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Crisan et al., 2009) have found that carriers of the S allele

are more sensitive to threats and stress; however, the

literature lacks consistency (Caspi et al., 2010). One can

infer that studies with larger samples may detect

significant but smaller effect sizes. Unfortunately, this

variant is difficult to genotype. To address the problem,

the current study demonstrates the feasibility of using

SNP genotype data from standard GWAS arrays to predict

5-HTTLPR genotypes in White Europeans.

SNPs present in widely used Illumina GWAS arrays were

studied, and eight were selected from those in the region

of the promoter polymorphism using stepwise regression.

VDA was used to develop a model to assign 5-HTTLPR
genotypes. The R2 of 0.85 between 5-HTTLPR and the

8-SNP proxy set compares favorably with the R2 of 0.7 that

was recently reported for a two-SNP proxy of 5-HTTLPR
(Wray et al., 2009). SNP array platforms have been evolv-

ing at a rapid rate, generating some concern regarding the

availability of the eight predicators across platforms.

Currently, all of them are assayed in Illumina Human1M-

Duo DNA Analysis BeadChip and are in the HapMap

and 1000 genomes projects, but three SNPs (rs1487971,

rs887469, and rs7217677) are not assayed on the Human-

Omni1-Quad BeadChip (1M-Quad). An alternative model

on the basis of the markers assayed on 1M-Quad has been

developed. Out of 77 tagging SNPs, 45 are assayed on the

1M-Quad across the region surrounding 5-HTTLPR. An

alternative prediction model for this platform is available

from the authors, upon request.

The discrepancies between ‘real’ and predicted geno-

types show that prediction is not perfect. However, some

differences may be because of errors in genotyping the

5-HTTLPR variant in these samples, and our method may

be more accurate than what is shown. There is no ‘gold

standard’ for 5-HTTLPR genotyping, and given the

known technical difficulties, both training sets and

validation sets may have included incorrect genotypes.

The misclassification observed here is not likely to result

in a systematic bias in assigning genotypes to cases when

compared with controls; however, it is likely to lead to a

loss of power when testing for an association. To further

evaluate the prediction method, models based on (a) the

same eight predictors using an alternative approach,

SVM, and (b) all of 77 tagging SNPs using VDA were

generated. For those models, the OMR was 8.4% by SVM,

just slightly higher than the 7.6% found with VDA, and

7.2% by the VDA with all tag SNPs, just a small

improvement over the one based on eight predictors.

Hu et al., 2006 show that a triple allele at this locus (S, LA,

LG) may be a more specific predictor of disease. Although

we have not had the data to conduct analyses to predict

this polymorphism with SNPs, the same methods as

those reported here can be used to do so in a sample that

has been genotyped for the polymorphism and SNPs in

the region. The method of VDA can easily be used to

predict six 5-HTTLPR genotypes in an analogous manner.

The strength of VDA is that it is suitable for high-

dimensional data.

The SNPs in the prediction model are commonly used

and present in the HapMap database. Although this

model was effective in predicting 5-HTTLPR in multiple

northern European populations, we cannot exclude the

possibility that distinct patterns of linkage disequilibrium

in specific, non-White populations will render the 8-SNP

model less effective in predicting 5-HTTLPR. In this

respect, this model does not differ from other indirect

genotyping approaches. Studies in a variety of populations

will be needed to demonstrate its general applicability.

When the model is inaccurate in a given population, the

VDA approach can be applied if 5-HTTLPR is genotyped

in a GWAS subsample, as was done here in Dutch1. In

addition, in samples without available GWAS data, the

eight SNPs could be genotyped using established SNP

genotyping techniques.

This prediction model was used to test for association in a

combined schizophrenia case–control samples from the

Netherlands and Germany, two populations that are

considered relatively homogenous. The sample provided

substantial statistical power, and a small but significant

association of schizophrenia with 5-HTTLPR was ob-

served with an odds ratio consistent with those found for

individual SNPs. Investigators with case–control schizo-

phrenia study samples should examine this association

using the prediction model. Until reliable, high-through-

put genotyping or resequencing methods for 5-HTTLPR
become available, this provides an effective substitute

that can provide the field of 5-HTTLPR research with

a new approach. In an analogous manner, other poly-

morphisms that prove difficult to genotype can also be

predicted.

The model to predict the 5-HTTLPR polymorphism

genotypes from the genotypes of the eight SNPs is avail-

able in R code and can be obtained from the authors.
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